【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:
![]()
等級(jí) | 不合格 | 合格 | ||
得分 |
|
|
|
|
頻數(shù) | 6 |
| 24 |
|
(1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);
(2)其他條件不變,在評(píng)定等級(jí)為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為
,求
的數(shù)學(xué)期望
.
【答案】(1)64,65;(2)
;(3)
.
【解析】
(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出
,平均數(shù),中位數(shù);
(2)設(shè)“第1次抽取的測(cè)試得分低于80分”為事件
,“第2次抽取的測(cè)試得分低于80分”為事件
,由條件概率公式
可求出;
(3)從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,其中“不合格”的學(xué)生數(shù)為
,“合格”的學(xué)生數(shù)為6;由題意可得
,5,10,15,20,利用“超幾何分布”的計(jì)算公式即可得出概率,進(jìn)而得出分布列與數(shù)學(xué)期望.
由題意知,樣本容量為
,
.
(1)平均數(shù)為
,
設(shè)中位數(shù)為
,因?yàn)?/span>
,所以
,則
,
解得
.
(2)由題意可知,分?jǐn)?shù)在
內(nèi)的學(xué)生有24人,分?jǐn)?shù)在
內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測(cè)試得分低于80分”為事件
,“第2次抽取的測(cè)試得分低于80分”為事件
,
則
,所以
.
(3)在評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中用分層抽樣的方法抽取10人,則“不合格”的學(xué)生人數(shù)為
,“合格”的學(xué)生人數(shù)為
.
由題意可得
的所有可能取值為0,5,10,15,20.
,
.
所以
的分布列為
| 0 | 5 | 10 | 15 | 20 |
|
|
|
|
|
|
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓
:
(
)過點(diǎn)
,離心率為
,其左、右焦點(diǎn)分別為
,
,且過焦點(diǎn)
的直線
交橢圓于
,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若點(diǎn)
的坐標(biāo)為
,設(shè)直線
與直線
的斜率分別為
,試證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,右焦點(diǎn)為
。斜率為1的直線
與橢圓
交于
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
。
(1)求橢圓
的方程;
(2)求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個(gè)樹形圖:記圖乙中第
行黑圈的個(gè)數(shù)為
,則(1)
_______;(2)
______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
是以
為直徑的圓
上異于
、
的一點(diǎn),直角梯形
所在平面與圓
所在平面垂直,且
,
.
![]()
(1)證明:
平面
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入
(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 4 | 7 | 8 | 10 |
(1)求
關(guān)于
的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn)
,其短半軸長(zhǎng)為
,一個(gè)焦點(diǎn)坐標(biāo)為
,點(diǎn)
在橢圓
上,點(diǎn)
在直線
上的點(diǎn),且
.
證明:直線
與圓
相切;
求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),函數(shù)
在區(qū)間
的最小值為
,試比較
與
的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com