如圖,
平面
,四邊形
是正方形,
,
、
分別是
、
的中點(diǎn).
![]()
(1)求二面角
的大小;
(2)求證:平面
平面
;
(3)求點(diǎn)
到平面
的距離。
略
解法一:(1)∵
⊥平面
,
∴
是
在平面
上的射影.
由
是正方形知
,
∴
。
∴
是二面角
的平面角.
∵
,∴
=45??,
即二面角
的大小為45??。………3分
(2)如圖,建立空
間直角坐標(biāo)系至
,則
,
,
,
,∵
是
的中點(diǎn),∴
,
∴
,
,
。
設(shè)平面
的一個(gè)法向量為
,
平面
的一個(gè)法向量為
。
∴
,
,即有
令
=1,得x1=-2,y1=-1.
∴
。
同理由![]()
,
,即有![]()
令z2=1,得x2=0,y2=1,∴
。
∵
-2×0+(-1)×1+1×1=0,
∴
,[來源:學(xué)*科*網(wǎng)Z*X*X*K]
∴ 平面MND⊥平面PCD.……………………………………………………………6分
(3)設(shè)
到平面
的距離為
由(2)知平面
的法向量![]()
∵
,
∴ |
|=4,又 |
|=
,
∴
=![]()
即點(diǎn)P到平面MND的距離為
.………………………………………………10分
解法二:(1)同解法一.
(2)作
的中點(diǎn)
,連接
,如圖.
∵
平行且等于
,
平行且等于
,
∴
與
平行且相等,于是四邊形
是平行四邊形,∴
//
。
∵
,∴
。∵
面
,∴
。又∵
,
∴
⊥面
。∴
。∴
⊥面
。∴
⊥面
。
又∵
面
,∴ 平面
⊥平面
。……………………6分
(3)設(shè)
到平面
的距離為
,
由
,有
,
即
,![]()
∴
。
∵ 在
中,
.
又
,
,∴
,
即
到平面
的距離為
。…………………………………………………10分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆度寧夏高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,
平面
,四邊形
是正方形,
,點(diǎn)
、
、
分別為線段
、
和
的中點(diǎn). 在線段
上是否存在一點(diǎn)
,使得點(diǎn)
到平面
的距離恰為
?若存在,求出線段
的長;
![]()
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期第一次階段考數(shù)學(xué)理科試卷 題型:解答題
如圖,
平面
,四邊形
是正方形,
,點(diǎn)
、
、
分別為線段
、
和
的中點(diǎn).
(1)求異面直線
與
所成角的余弦值;
(2)在線段
上是否存在一點(diǎn)
,使得點(diǎn)
到平面
的距離恰為
?若存在,求出線段
的長;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分14分)
如圖,
平面
,四邊形
是矩形,
,
與平面
所成角是
,點(diǎn)
是
的中點(diǎn),點(diǎn)
在矩形
的邊
上移動.
(1)證明:無論點(diǎn)
在邊
的何處,都有
;
(2)當(dāng)
等于何值時(shí),二面角
的大小為
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年四川省高二下學(xué)期期中考試數(shù)學(xué)卷(文) 題型:解答題
如圖,
平面
,四邊形
是正方形,
,
、
分別是
、
的中點(diǎn).
![]()
(1)求二面角
的大小;
(2)求證:平面
平面
;
(3)求點(diǎn)
到平面
的距離。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com