【題目】若函數f(x)=x2+ex﹣
(x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A.(﹣
)
B.(
)
C.(
)
D.(
)
科目:高中數學 來源: 題型:
【題目】設橢圓
的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率
的值;
(2)設過點
的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
﹣kx且f(x)在區間(2,+∞)上為增函數.
(1)求k的取值范圍;
(2)若函數f(x)與g(x)的圖象有三個不同的交點,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
為常數
,對任意
,均有
恒成立.下列說法:
①
的周期為
;
②若
為常數)的圖像關于直線
對稱,則
;
③若
且
,則必有
;
④已知定義在
上的函數
對任意
均有
成立,且當
時,
;又函數
為常數),若存在
使得
成立,則
的取值范圍是
.其中說法正確的是____.(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x),g(x)滿足:對于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).當x<0時,f′(x)<0,g′(x)>0,則當x>0時,有( )
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣
sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=
,直線l:y=(k﹣3)x﹣k+2
(1)函數f(x)在x=e處的切線與直線l平行,求實數k的值
(2)若至少存在一個x0∈[1,e]使f(x0)<g(x0)成立,求實數a的取值范圍
(3)設k∈Z,當x>1時f(x)的圖象恒在直線l的上方,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
(x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)當﹣1≤t≤1時,要使關于t的方程g(t)=kt有且僅有一個實根,求實數k的取值范圍
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com