已知函數(shù)
的定義域是
,
是
的導(dǎo)函數(shù),且
在
內(nèi)恒成立.
求函數(shù)
的單調(diào)區(qū)間;
若
,求
的取值范圍;
(3) 設(shè)
是
的零點(diǎn),
,求證:
.
(1)
;(2)
;(3)詳見解析.
解析試題分析:(1)利用求導(dǎo)的思路求解函數(shù)的單調(diào)區(qū)間,從分借助
;(2)首先對
求導(dǎo),然后借助已知的不等式恒成立進(jìn)行轉(zhuǎn)化為
在
內(nèi)恒成立,進(jìn)而采用構(gòu)造函數(shù)的技巧,
,通過求導(dǎo)研究其最大值,從而得到
的取值范圍;(3)借助第一問結(jié)論,得到
,然后通過變形和構(gòu)造的思路去證明不等式成立.
試題解析:(1)
,∵
在
內(nèi)恒成立
∴
在
內(nèi)恒成立,
∴
的單調(diào)區(qū)間為
4分
(2)
,∵
在
內(nèi)恒成立
∴
在
內(nèi)恒成立,即
在
內(nèi)恒成立,
設(shè)
,![]()
,
,
,
,
故函數(shù)
在
內(nèi)單調(diào)遞增,在
內(nèi)單調(diào)遞減,
∴
,∴
8分
(3)∵
是
的零點(diǎn),∴
由(1),
在
內(nèi)單調(diào)遞增,
∴當(dāng)
時,
,即
,
∴
時
,∵
,∴
,
且
即![]()
∴
,
∴
14分
考點(diǎn):1.函數(shù)的單調(diào)性;(2)導(dǎo)數(shù)的應(yīng)用;(3)不等式的證明.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是定義在
上的偶函數(shù),且
時,
,函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/4/1dnnf2.png" style="vertical-align:middle;" />.
(I)求
的值;
(II)設(shè)函數(shù)
的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/d/1bpaa3.png" style="vertical-align:middle;" />,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
同時滿足以下條件:①函數(shù)
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);③函數(shù)
在
處的切線與直線
垂直.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)設(shè)
,若存在
使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,![]()
.
⑴ 求不等式
的解集;
⑵ 如果關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
的圖像在
處取得極值4.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)對于函數(shù)
,若存在兩個不等正數(shù)![]()
,當(dāng)
時,函數(shù)
的值域是
,則把區(qū)間
叫函數(shù)
的“正保值區(qū)間”.問函數(shù)
是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)f(x)(x∈D),若x∈D時,恒有
>
成立,則稱函數(shù)
是D上的J函數(shù).
(Ⅰ)當(dāng)函數(shù)f(x)=m
lnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),
試比較g(a)與
g(1)的大小;
求證:對于任意大于1的實(shí)數(shù)x1,x2,x3, ,xn,均有g(shù)(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,直線
與函數(shù)
的圖像都相切,且與函數(shù)
的圖像的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線
的方程及
的值;
(2)若
(其中
是
的導(dǎo)函數(shù)),求函數(shù)
的最大值;
(3)當(dāng)
時,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)試判斷函數(shù)
的單調(diào)性,并說明理由;
(Ⅱ)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com