【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. ![]()
(Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
【答案】解:(Ⅰ)證明:因為∠DAB=60°,AB=2AD,由余弦定理得BD=
,
從而BD2+AD2=AB2,故BD⊥AD
又PD⊥底面ABCD,可得BD⊥PD
所以BD⊥平面PAD.故PA⊥BD
(Ⅱ)如圖,以D為坐標原點,AD的長為單位長,
射線DA為x軸的正半軸建立空間直角坐標系D﹣xyz,則
A(1,0,0),B(0,
,0),C(﹣1,
,0),P(0,0,1).
=(﹣1,
,0),
=(0,
,﹣1),
=(﹣1,0,0),
設平面PAB的法向量為
=(x,y,z),則 ![]()
即
,
因此可取
=(
,1,
)
設平面PBC的法向量為
=(x,y,z),則
,
即: ![]()
可取
=(0,1,
),cos<
>=
= ![]()
故二面角A﹣PB﹣C的余弦值為:﹣
.
![]()
【解析】(Ⅰ)因為∠DAB=60°,AB=2AD,由余弦定理得BD=
,利用勾股定理證明BD⊥AD,根據PD⊥底面ABCD,易證BD⊥PD,根據線面垂直的判定定理和性質定理,可證PA⊥BD;(Ⅱ)建立空間直角坐標系,寫出點A,B,C,P的坐標,求出向量
,和平面PAB的法向量,平面PBC的法向量,求出這兩個向量的夾角的余弦值即可.
【考點精析】認真審題,首先需要了解直線與平面垂直的性質(垂直于同一個平面的兩條直線平行).
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x+1)+
.
(I)討論函數f(x)在(0,+∞)上的單調性;
(II)設函數f(x)存在兩個極值點,并記作x1 , x2 , 若f(x1)+f(x2)>4,求正數a的取值范圍;
(III)求證:當a=1時,f(x)>
(其中e為自然對數的底數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險的基本保費為a(單位:元),繼續購買該保險的投保人成為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續保人一年內出險次數與相應概率如下:
一年內出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(Ⅲ)求續保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:
﹣
=1(a>0,b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,點P是雙曲線在第一象限內的點,直線PO,PF2分別交雙曲線C的左、右支于另一點M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+x2(a為實常數).
(Ⅰ)若a=﹣2,求證:函數f(x)在(1,+∞)上是增函數;
(Ⅱ)求函數f(x)在[1,e]上的最小值及相應的x值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為
(其中t為參數).現以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標方程;
(Ⅱ) 過點M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求函數f(x)的單調區間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1=
,AB=BB1=2,BC=1,D為CC1中點. ![]()
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com