已知函數(shù)
(
)的最小正周期為
.
(1)求函數(shù)
的單調(diào)增區(qū)間;
(2)將函數(shù)
的圖象向左平移
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)
的圖象;若
在
上至少含有10個(gè)零點(diǎn),求b的最小值.
(1)
(2)![]()
解析試題分析:(1)由![]()
![]()
根據(jù)函數(shù)
的周期
,可得
,從而確定
的解析式,再根據(jù)正弦函數(shù)的單調(diào)性求出
的單調(diào)區(qū)間;
(2)![]()
![]()
,選求出函數(shù)在長度為一個(gè)周期的區(qū)間
內(nèi)的零點(diǎn),再根據(jù)函數(shù)的周期性求出原點(diǎn)右側(cè)第十個(gè)零點(diǎn),從而確定
的取值范圍.
試題解析:
解:(1)由題意得:![]()
![]()
,2分
由周期為
,得
,得
, 4分
函數(shù)的單調(diào)增區(qū)間為:
,
整理得
,
所以函數(shù)
的單調(diào)增區(qū)間是
. 6分
(2)將函數(shù)
的圖象向左平移
個(gè)單位,再向上平移單位,得到
的圖象,所以
,8分
令
,得
或
,10分
所以在
上恰好有兩個(gè)零點(diǎn),
若
在
上有10個(gè)零點(diǎn),則b不小于第10個(gè)零點(diǎn)的橫坐標(biāo)即可,即b的最小值為
. 12分
考點(diǎn):1、兩角和與差的三角函數(shù)公式及二倍角公式;2、正弦函數(shù)的性質(zhì);函數(shù)的零點(diǎn)的概念.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
的部分圖象如圖所示。![]()
(1)求
的最小正周期及解析式;
(2)設(shè)
,求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求
的值及函數(shù)
的單調(diào)遞增區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,函數(shù)
.
(1)設(shè)
,將函數(shù)
表示為關(guān)于
的函數(shù)
,求
的解析式和定義域;
(2)對任意
,不等式
都成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),設(shè)f(x)=a·b.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈
時(shí),求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(2cos2x-1)sin2x+
cos4x
(1)求f(x)的最小正周期及最大值。
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
,f(
)=-
,且角A為鈍角,求sinC
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com