已知首項為
的等比數列{an}不是遞減數列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數列.
(1)求數列{an}的通項公式;
(2)設Tn=Sn-
(n∈N*),求數列{Tn}的最大項的值與最小項的值.
科目:高中數學 來源: 題型:解答題
設等差數列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項和Sn最大時n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
知數列{an}是首項為
,公比為
的等比數列,設bn+15log3an=t,常數t∈N*.
(1)求證:{bn}為等差數列;
(2)設數列{cn}滿足cn=anbn,是否存在正整數k,使ck,ck+1,ck+2按某種次序排列后成等比數列?若存在,求k,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知Sn是等比數列{an}的前n項和,S4,S2,S3成等差數列,且a2+a3+a4=-18.
(1)求數列{an}的通項公式;
(2)是否存在正整數n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列
是等差數列,![]()
(1)判斷數列
是否是等差數列,并說明理由;
(2)如果
,試寫出數列
的通項公式;
(3)在(2)的條件下,若數列
得前n項和為
,問是否存在這樣的實數
,使
當且僅當
時取得最大值。若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}滿足a1>0,an+1=2-|an|,n∈N*.
(1)若a1,a2,a3成等比數列,求a1的值;
(2)是否存在a1,使數列{an}為等差數列?若存在,求出所有這樣的a1;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com