【題目】設二次函數
滿足條件:
(1)當
時
,且
;
(2)當
時,
;
(3)
在R上的最小值為0.
求最大的m(m>1),使得存在
,只要
,就有![]()
科目:高中數學 來源: 題型:
【題目】設直線l1:y=k1x+1,l2:y=k2x-1,其中實數k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
+y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設A(x1 , y1),B(x2 , y2)滿足
=
.
(1)求證:
+
=
;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】信息科技的進步和互聯網商業模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現在銀行的大部分業務都可以通過智能終端設備完成,多家銀行職員人數在悄然減少.某銀行現有職員320人,平均每人每年可創利20萬元.據評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉所需人數不得小于現有職員的
,為使裁員后獲得的經濟效益最大,該銀行應裁員多少人?此時銀行所獲得的最大經濟效益是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com