【題目】已知函數f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函數g(x)=
.
(l)求函數g(x)的解析式;
(2)證明:對任意實數m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(
-1)=0有四個不同的實數解,求實數k的取值范圍.
【答案】(1)
;(2)詳見解析;(3)
.
【解析】
(1)只需要利用好所給的在區間[0,3]上有最大值4,最小值1,即可列出方程求的兩個未知數;
(2)可判斷g(x)在(0,+∞)上為增函數,又(m2+2)-(2|m|+l)=(|m|-l)2≥0,即可判定;
(3)可直接對方程進行化簡、換元結合函數圖象即可獲得問題的解答.
解:(1)∵f(x)=ax2+2ax+3-b=a(x+1)2+3-a-b,故拋物線的對稱軸為x=-1.
①當a>0時,拋物線開口向上,∴f(x)在[0,3]上為增函數.
f(x)min=f(0)=3-b=2,f(x)max=f(3)=15a-b+3=17.
∴a=1,b=1
②當a<0時,拋物線開口向下,f(x)在[0,3]上為減函數.
f(x)min=f(3)=15a-b+3=2,f(x)max=f(0)=3-b=17.
∴a=-1,b=-14.又b>0,∴a=1,b=1符合題意
∴f(x)=x2+2x+2.g(x)=x-
+2.
(2)證明:任取x2>x1>0,則g(x2)-g(x1)=(
∵x2-x1>0,x1x2>0.∴g(x2)-g(x1)>0,.
故g(x)在(0,+∞)上為增函數.
又(m2+2)-(2|m|+l)=(|m|-l)2≥0;
∴m2+2≥(2|m|+l)>0.∴g(m2+2)≥g(2|m|+l).
(3)令t=|log2x-1|,則方程為g(t)+3k(
-1)=0,即t-
+2+3k(
-1)=0
可化為t2+(2-3k)t+3k-2=0(△).
因為當t>0時,t=|log2x-1|有兩個x,
當t=0時,t=|log2x-1|有一個x,
當t<0時,t=|log2x-1|無解
當原方程有四個不同實數解時,關于t的(△)方程有兩個不相等的正實根.
∴
,即
∴k>2.
故實數k的取值范圍為(2,+∞).
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.
(1)求
;
(2)除H以外,直線MH與C是否有其它公共點?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣x+1.
(1)討論f(x)的單調性;
(2)證明當x∈(1,+∞)時,1<
<x;
(3)設c>1,證明當x∈(0,1)時,1+(c﹣1)x>cx .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=a-
(a∈R,e為自然對數的底數).
(1)判定并證明f(x)的單調性;
(2)若對任意實數x,f(x)>m2-4m+2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0對任意的x∈R都成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為
(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是
外,其余每局比賽甲隊獲勝的概率都是
.假設各局比賽結果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=
AD.![]()
(1)在平面PAD內找一點M,使得直線CM∥平面PAB,并說明理由;
(2)證明:平面PAB⊥平面PBD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com