【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.![]()
【答案】證明:(I)取BC中點E,連結AE、BD,∵△PAB和△PCD都是等邊三角形,∴AD=AB,
∵∠ABC=∠BAD=90°,BC=2AD,∴四邊形ABED為正方形,
設AB=2,則BD=CD=2
,BC=4,
∴BD2+CD2=BC2 ,
∴CD⊥BD,
∵平面ABCD⊥平面PBD,平面ABCD∩平面PBD=BD,
∴CD⊥平面PBD.
解:(II)由(I)知CD⊥平面PBD,又PD面PBD,∴CD⊥PD.
取PD的中點F,PC的中點G,連結FG,
則FG∥CD,FG⊥PD.
連結AF,由△APD為等邊三角形,得AF⊥PD.
∴∠AFG為二面角A﹣PD﹣C的平面角.
連結AG、EG,則EG∥PB.
又PB⊥AE,∴EG⊥AE,
設AB=2,則AE=2
,EG=
=1,
AG=
=3,
在△AFG中,FG=
=
,AF=
,AG=3,
∴cos∠AFG=
=﹣
.
∴二面角A﹣PD﹣C的余弦值為
.![]()
【解析】(I)取BC中點E,推導出四邊形ABED為正方形,從而CD⊥BD,由此能證明CD⊥平面PBD.(II)由(I)知CD⊥平面PBD,從而CD⊥PD.取PD的中點F,PC的中點G,連結FG,連結AF,得∠AFG為二面角A﹣PD﹣C的平面角,由此能示出二面角A﹣PD﹣C的余弦值.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某保險公司針對一個擁有20000人的企業推出一款意外險產品,每年每位職工只要交少量保費,發生意外后可一次性獲得若干賠償金.保險公司把企業的所有崗位共分為A、B、C三類工種,從事三類工種的人數分布比例如圖,根據歷史數據統計出三類工種的賠付頻率如下表(并以此估計賠付頻率).
工種類別 | A | B | C |
賠付頻率 |
|
|
|
對于A、B、C三類工種職工每人每年保費分別為a元,a元,b元,出險后的賠償金額分別為100萬元,100萬元,50萬元,保險公司在開展此項業務過程中的固定支出為每年10萬元.![]()
(Ⅰ)若保險公司要求利潤的期望不低于保費的20%,試確定保費a、b所要滿足的條件;
(Ⅱ)現有如下兩個方案供企業選擇;
方案1:企業不與保險公司合作,企業自行拿出與保險提供的等額的賠償金額賠付給出險職工;
方案2:企業與保險公司合作,企業負責職工保費的60%,職工個人負責保費的40%,出險后賠償金由保險公司賠付.
若企業選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費a、b所要滿足的條件,并判斷企業是否可與保險公司合作.(若企業選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險公司所提條件不矛盾,則企業可與保險公司合作.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx﹣
)+2
sinωx,(ω>0)周期T∈[π,2π],x=π為函數f(x)圖象的一條對稱軸,
(1)求ω;
(2)求f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得
+x0+1<0”,則
p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
,過
的直線l與橢圓交于A,B兩點,過Q(x0 , 0)(|x0|<a)的直線l'與橢圓交于M,N兩點. ![]()
(1)當l的斜率是k時,用a,b,k表示出|PA||PB|的值;
(2)若直線l,l'的傾斜角互補,是否存在實數x0 , 使
為定值,若存在,求出該定值及x0 , 若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為正數,給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若
﹣
=1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com