已知F1,F2分別是橢圓E:
+y2=1的左、右焦點,F1,F2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(1)求圓C的方程;
(2)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.
(1)(x-2)2+(y-2)2=4 (2)x-
y-2=0或x+
y-2=0
【解析】
解:(1)由題設知,F1,F2的坐標分別為(-2,0),(2,0),圓C的半徑為2,圓心為原點O關于直線x+y-2=0的對稱點.
設圓心的坐標為(x0,y0),
由
解得![]()
所以圓C的方程為(x-2)2+(y-2)2=4.
(2)由題意,可設直線l的方程為x=my+2,
則圓心到直線l的距離d=
.
所以b=2
=
.
由
得(m2+5)y2+4my-1=0.
設l與E的兩個交點坐標分別為(x1,y1),(x2,y2),
則y1+y2=-
,y1y2=-
.
于是a=
=![]()
=![]()
=
=
.
從而ab=
=![]()
=
≤
=2
.
當且僅當
=
,即m=±
時等號成立.
故當m=±
時,ab最大,此時,直線l的方程為x=
y+2或x=-
y+2,
即x-
y-2=0或x+
y-2=0.
科目:高中數(shù)學 來源: 題型:
| x2 |
| 8 |
| y2 |
| 4 |
| |PF1|+|PF2| |
| |OP| |
| A、[0,6] | ||||||
B、(2,
| ||||||
C、(
| ||||||
D、[0,
|
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省綿陽市高三第二次月考理科數(shù)學試卷 題型:選擇題
已知F1,F2分別是雙曲線
(a>0,b>0)的左、右焦點,過F2且平行于y軸的直線交雙曲線的漸近線M,N兩點.若ΔMNF1為銳角三角形,則該雙曲線的離心率的取值范圍是
A、
B、
C、
D、![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的中心在坐標原點
,焦點在X軸上,F(xiàn)1,F2分別是橢圓的左、右焦點,M是橢圓短軸的一個端點,△MF1F2的面積為4,過F1的直線
與橢圓交于A,B兩點,△ABF2的周長為
.
(Ⅰ)求此橢圓的方程;
(Ⅱ)若N是左標平面內一動點,G是△MF1F2的重心,且
,求動點N的軌跡方程;
(Ⅲ)點p審此橢圓上一點,但非短軸端點,并且過P可作(Ⅱ)中所求得軌跡的兩條不同的切線,
、R是兩個切點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:江西省上高二中09-10學年高二第五次月考(理) 題型:選擇題
已知P是雙曲線
上一點,雙曲線的一條漸近線方程為
,F(xiàn)1,F2分別是雙曲線的左右焦點,若|PF1|=5,則|PF2|等于( )
A. 1或9 B. 5 C. 9 D. 13
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com