【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.
【答案】
(1)解:全集U=R,集合A={x|1<x≤8},B={x|2<x<9},
∴A∩B={x|2<x≤8},A∪B={x|1<x<9}
(2)解:∵集合A={x|1<x≤8},C={x|x≥a},
A∩C≠,
∴a≤8,
∴a的取值范圍為(﹣∞,8]
【解析】(1)利用交集、并集的定義能求出結(jié)果.(2)利用交集的性質(zhì)結(jié)合不等式的性質(zhì)能求出a的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解集合的并集運算的相關(guān)知識,掌握并集的性質(zhì):(1)A
A∪B,B
A∪B,A∪A=A,A∪
=A,A∪B=B∪A;(2)若A∪B=B,則A
B,反之也成立,以及對集合的交集運算的理解,了解交集的性質(zhì):(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五面體
中,四邊形
是菱形,
是邊長為2的正三角形,
,
.
![]()
(1)證明:
;
(2)若
在平面
內(nèi)的正投影為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x|
<0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)的解析式滿足
.
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(3)當a=1時,記函數(shù)
,求函數(shù)g(x)在區(qū)間
上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
在x=1處的切線與直線
平行。
(Ⅰ)求a的值并討論函數(shù)y=f(x)在
上的單調(diào)性。
(Ⅱ)若函數(shù)
(
為常數(shù))有兩個零點
,
(1)求m的取值范圍;
(2)求證:
。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為![]()
(Ⅰ)求曲線
的直角坐標方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線
與曲線
交于
兩點,若點
的直角坐標為
,
試求當
時,
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,曲線
是過點
,傾斜角為
的直線,以直角坐標系
的原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線
的普通方程和曲線
的一個參數(shù)方程;
(2)曲線
與曲線
相交于
兩點,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com