【題目】設橢圓
的左、右焦點為
,
,右頂點為
,上頂點為
.已知
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設
為橢圓上異于其頂點的一點,以線段
為直徑的圓經過點
,經過原點的直線
與該圓相切.求直線
的斜率.
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱
各條棱的長度均相等,
為
的中點,
分別是線段
和線段
的動點(含端點),且滿足
,當
運動時,下列結論中不正確的是
![]()
A. 在
內總存在與平面
平行的線段
B. 平面
平面![]()
C. 三棱錐
的體積為定值
D.
可能為直角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為4的正方形
中,
是
的中點,
是
的中點,現將三角形
沿
翻折成如圖2所示的五棱錐
.
![]()
(1)求證:
平面
;
(2)若平面
平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線
的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線
與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線
的極坐標方程是
,以極點為原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
過點
,傾斜角為
.
(1)求曲線
的直角坐標方程與直線l的參數方程;
(2)設直線
與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系
中,曲線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數).
(1)若
,求曲線
與直線
的兩個交點之間的距離;
(2)若曲線
上的點到直線
距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x-lnx,g(x)=x2-ax.
(1)求函數f(x)在區間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數h(x)圖像上任意兩點,且滿足
>1,求實數a的取值范圍;
(3)若x∈(0,1],使f(x)≥
成立,求實數a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n(
)份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(
且
)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為
次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p(
).
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現取其中k(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)試運用概率統計的知識,若
,試求p關于k的函數關系式
;
(ii)若
,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:
,
,
,
,![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com