某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為
的空氣隔層.根據熱傳導知識,對于厚度為
的均勻介質,兩側的溫度差為
,單位時間內,在單位面積上通過的熱量
,其中
為熱傳導系數.假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數為
,空氣的熱傳導系數為
.)
(1)設室內,室外溫度均分別為
,
,內層玻璃外側溫度為
,外層玻璃內側溫度為
,且
.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用
,
及
表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計
的大小?![]()
科目:高中數學 來源: 題型:解答題
某商場銷售某種商品的經驗表明,該商品每日的銷售量
(單位:千克)與銷售價格
(單位:元/千克)滿足關系式
,其中
,
為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(Ⅰ)求
的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格
的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數![]()
(I)求函數
的極值;
(II)對于函數
和
定義域內的任意實數
,若存在常數
,使得不等式
和
都成立,則稱直線
是函數
和
的“分界線”.
設函數
,![]()
,試問函數
和
是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
(
是自然對數的底數)的最小值為
.
(Ⅰ)求實數
的值;
(Ⅱ)已知![]()
且
,試解關于
的不等式
;
(Ⅲ)已知
且
.若存在實數
,使得對任意的
,都有
,試求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,若f(x)在x=1處的切線方程為3x+y-6=0
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)若對任意的
,都有f(x)
成立,求函數g(t)
的最值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com