【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領(lǐng)市場,搶占今年“雙十一”的先機(jī),對成都地區(qū)年齡在15到75歲的人群“是否網(wǎng)上購物”的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)
年齡段 |
|
|
|
|
|
|
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
購物人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的
列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“網(wǎng)上購物”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | 總計 | |
使用網(wǎng)上購物 | |||
不使用網(wǎng)上購物 | |||
總計 |
(2)若從年齡在
的樣本中隨機(jī)選取2人進(jìn)行座談,求選中的2人中恰好有1人“使用網(wǎng)上購物”的概率.
參考數(shù)據(jù):
| 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:
.
【答案】(1)列聯(lián)表見解析,可以在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用網(wǎng)上購物”與年齡有關(guān)
(2)![]()
【解析】
(1)由已知表格可得列聯(lián)表中需要的數(shù)據(jù),根據(jù)
公式計算
可得結(jié)論;
(2)5人中有2人參與網(wǎng)購,求出任選2人的方法總數(shù)及所求事件的方法數(shù)后可得概率.
解:(1)由統(tǒng)計表可得,低于45歲人數(shù)為70人,不低于45歲人數(shù)為30人,可得列聯(lián)表如下:
年齡低于45歲 | 年齡不低于45歲 | 總計 | |
使用網(wǎng)上購物 | 60 | 15 | 75 |
不使用網(wǎng)上購物 | 10 | 15 | 25 |
總計 | 70 | 30 | 100 |
于是有
的觀測值
.
故可以在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用網(wǎng)上購物”與年齡有關(guān).
(2)由題意可知,基本事件的總數(shù)為10.
記事件
為:選中的2人中恰好有1人“使用網(wǎng)上購物”.
所包含的基本事件的總數(shù)為6.
∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到
的圖象
,只要將
圖象
怎樣變化得到( )
A.將
的圖象
沿x軸方向向左平移
個單位
B.將
的圖象
沿x軸方向向右平移
個單位
C.先作
關(guān)于x軸對稱圖象
,再將圖象
沿x軸方向向右平移
個單位
D.先作
關(guān)于x軸對稱圖象
,再將圖象
沿x軸方向向左平移
個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在區(qū)間
有唯一零點(diǎn)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線
:
的焦點(diǎn)為
,準(zhǔn)線為
,
,以
為圓心的圓
與
相切于點(diǎn)
,
的縱坐標(biāo)為
,
是圓
與
軸的不同于
的一個交點(diǎn).
(1)求拋物線
與圓
的方程;
(2)過
且斜率為
的直線
與
交于
,
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:y=
,D為直線y=
上的動點(diǎn),過D作C的兩條切線,切點(diǎn)分別為A,B.
(1)證明:直線AB過定點(diǎn):
(2)若以E(0,
)為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:
(
)的離心率為
,點(diǎn)
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點(diǎn)
,且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得
?若存在,求C的坐標(biāo):若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系
中,橢圓C:
的離心率是
,拋物線E:
的焦點(diǎn)F是C的一個頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點(diǎn),且位于第一象限,E在點(diǎn)P處的切線
與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線
與y軸交于點(diǎn)G,記
的面積為
,
的面積為
,求
的最大值及取得最大值時點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
的所有頂點(diǎn)都在球
的球面上,
平面
,
,
,若球
的表面積為
,則三棱錐
的側(cè)面積的最大值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件求方程.
(1)已知
頂點(diǎn)的坐標(biāo)為
,求
外接圓的方程;
(2)若過點(diǎn)
的直線
被圓
所截的弦長為
,求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com