已知拋物線
的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于
軸(垂足為T),與拋物線交于不同的兩點P、Q,且
.
(Ⅰ)求點T的橫坐標
;
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標準方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設
,若
的取值范圍.
科目:高中數學 來源: 題型:解答題
動圓M過定點A(-
,0),且與定圓A´:(x-
)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率為
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
與橢圓
相切
,直線
與
軸交于點
,當
為何值時
的面積有最小值?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
過點
,橢圓
左右焦點分別為
,上頂點為
,
為等邊三角形.定義橢圓C上的點
的“伴隨點”為
.
(1)求橢圓C的方程;
(2)求
的最大值;
(3)直線l交橢圓C于A、B兩點,若點A、B的“伴隨點”分別是P、Q,且以PQ為直徑的圓經過坐標原點O.橢圓C的右頂點為D,試探究ΔOAB的面積與ΔODE的面積的大小關系,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知離心率為
的橢圓
上的點到左焦點
的最長距離為
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點
任作一條與兩坐標軸都不垂直的弦
,若點
在
軸上,且使得
為
的一條內角平分線,則稱點
為該橢圓的“左特征點”,求橢圓的“左特征點”
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
及點
,直線
斜率為1且不過點
,與拋物線交于點A,B,
(1) 求直線
在
軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C、D,證明:AD,BC交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為
和
,且|![]()
|=2,
點(1,
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過
的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切是圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定直線
動圓M與定圓
外切且與直線
相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設A、B是曲線C上兩動點(異于坐標原點O),若
求證直線AB過一定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,O為坐標原點,過點P(2,0)且斜率為k的直線L交拋物線y
=2x于M(x
,y
),N(x
,y
)兩點. ⑴寫出直線L的方程;⑵求x
x
與y
y
的值;⑶求證:OM⊥ON![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com