.(本題滿分14分) 已知函數(shù)
(a,b是不同時為零的常數(shù)),其導(dǎo)函數(shù)為
.
(1)當(dāng)
時,若不等式
對任意
恒成立,求
的取值范圍;
(2)若函數(shù)
為奇函數(shù),且在
處的切線垂直于直線
,關(guān)于x的方程
在
上有且只有一個實數(shù)根,求實數(shù)t的取值范圍.
解:(1)當(dāng)
時,
,………1分
依題意 ![]()
即
恒成立
,解得 ![]()
所以b的取值范圍是
…………………………………4分
(2)因為
為奇函數(shù),所以
,所以
,
.又
在
處的切線垂直于直線
,所以
,即
.…………………………………………………6分
|
法一:如圖所示,作
與
的圖像,若只有一個交點(diǎn),則
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解得
;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
![]()
![]()
![]()
|
|
|
|
………………………………………………………………………13分
綜上t的取值范圍是
或
或
.…………………14分
法二:由
.
作
與
的圖知交點(diǎn)橫坐標(biāo)為
,![]()
當(dāng)![]()
時,過
圖象上任意一點(diǎn)向左作平行于
軸的直線與
都只有唯一交點(diǎn),當(dāng)
取其它任何值時都有兩個或沒有交點(diǎn)。
所以當(dāng)![]()
時,方程
在
上有且只有一個實數(shù)根.
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實數(shù)m的值
(Ⅱ)若A
CRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)
是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
。
(1)求動點(diǎn)
的軌跡方程;
(2)已知點(diǎn)
,在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使![]()
![]()
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com