【題目】十九世紀(jì)末:法國學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長長于這個(gè)圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機(jī)半徑”“隨機(jī)端點(diǎn)”“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)
為圓
上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)
,連接
,所得弦長
大于圓
的內(nèi)接等邊三角形邊長的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.
B.
C.
D.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于任意
,滿足條件
且
是與
無關(guān)的常數(shù)
的無窮數(shù)列
稱為
數(shù)列.
(1)若
,證明:數(shù)列
是
數(shù)列;
(2)設(shè)數(shù)列
的通項(xiàng)為
,且數(shù)列
是
數(shù)列,求常數(shù)
的取值范圍;
(3)設(shè)數(shù)列
,問數(shù)列
是否是
數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)證明:平面
平面
;
(3)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
![]()
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的![]()
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列
中存在
,其中
,
,
,
,
及
均為正整數(shù),且
(
),則稱數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
的前
項(xiàng)和
,求證:
是“
數(shù)列”;
(2)若
是首項(xiàng)為1,公比為
的等比數(shù)列,判斷
是否是“
數(shù)列”,說明理由;
(3)若
是公差為
(
)的等差數(shù)列且
(
),
,求證:數(shù)列
是“
數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在區(qū)間
內(nèi)單調(diào)遞增,求
的取值范圍;
(2)若
在區(qū)間
內(nèi)存在極大值
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似的,我們在平面向量集
上也可以定義一個(gè)稱“序”的關(guān)系,記為“
”.定義如下:對于任意兩個(gè)向量
,“
”當(dāng)且僅當(dāng)“
”或“
”。按上述定義的關(guān)系“
”,給出如下四個(gè)命題:
①若
,則
;
②若
,則
;
③若
,則對于任意
;
④對于任意向量
,若
,則
。
其中真命題的序號為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分) 如圖,
的外接圓
的半徑為
,
所在的平面,
,
,
,且
,
.
![]()
(1)求證:平面ADC
平面BCDE.
(2)試問線段DE上是否存在點(diǎn)M,使得直線AM與平面ACD所成角的正弦值為
?若存在,
確定點(diǎn)M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是( )
A. 命題“若
,則
”的逆否命題為“若
,則
”
B. 若
為假命題,則
均為假命題
C. 對于命題
:![]()
,使得
,則
:![]()
,均有![]()
D. “
”是“
”的充分不必要條件
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com