【題目】如圖,直三棱柱ABC—A1B1C1中,側(cè)面AA1B1B是正方形,AC丄側(cè)面AA1B1B,AC=AB,點(diǎn)E是B1C1的中點(diǎn).
(Ⅰ)求證:C1A∥平面EBA1;
(Ⅱ)若EF丄BC1,垂足為F,求二面角B—AF—A1的余弦值.
![]()
【答案】(1)見(jiàn)解析(2) ![]()
【解析】試題分析:(Ⅰ)由題意先證得EO//AC1,即可由線面平行的判定定理得出C1A∥平面EBA1;
(Ⅱ) 由已知AC丄底面AA1B1B,得A1C1丄底面AA1B1B,得C1A⊥AA1,C1A1⊥A1B1,又AA1⊥A1B1,故AA1,A1B1,A1C1兩兩垂直,建立空間直角坐標(biāo)系,求得平面A1AF的法向量
,平面
的一個(gè)法向量
設(shè)二面角B—AF—A1的平面角為θ,則
即得解.
試題解析:
(Ⅰ)如圖,連結(jié)
,
交于
,連結(jié)
,由
是正方形,易得O為AB1的中點(diǎn),從而OE為
的中位線,所以EO//AC1, 因?yàn)镋O
面EBA,C1A
面EBA1,所以C1A//平面EBA1
![]()
(Ⅱ)由已知AC丄底面AA1B1B,得A1C1丄底面AA1B1B,
得C1A⊥AA1,C1A1⊥A1B1,又AA1⊥A1B1,故AA1,A1B1,A1C1兩兩垂直,
如圖,分別以AA1,A1B1,A1C1所在直線為x,y,z軸,A1為原點(diǎn)建立空間直角坐標(biāo)系,
設(shè)AA1=2,則A1 (0,0,0) ,A(2,0,0),C1(0,0,2),E(0,1,1),B(2,2,0),
則
,
,
,
設(shè)
,則由
,
得
,即得![]()
于是
,所以![]()
又
,所以
,解得
,
所以
,
設(shè)平面A1AF的法向量是
,則
即![]()
令
,則
,
又平面
的一個(gè)法向量為
,則
即![]()
令
,得
設(shè)二面角B—AF—A1的平面角為θ,則
由
,面
面
,可知
為銳角,
即二面角B—AF—A1的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】語(yǔ)音交互是人工智能的方向之一,現(xiàn)在市場(chǎng)上流行多種可實(shí)現(xiàn)語(yǔ)音交互的智能音箱,它們可以通過(guò)語(yǔ)音交互滿足人們的部分需求.經(jīng)市場(chǎng)調(diào)查,某種新型智能音箱的廣告費(fèi)支出x(萬(wàn)元)與銷售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x | 1 | 4 | 5 | 6 | 9 |
y | 20 | 35 | 50 | 65 | 80 |
(1)求y關(guān)于x的線性回歸方程(數(shù)據(jù)精確到0.01);
(2)利用(1)中的回歸方程,預(yù)測(cè)廣告費(fèi)支出10萬(wàn)元時(shí)的銷售額.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若函數(shù)
在
上單調(diào)遞增,求
的取值范圍;
(2)設(shè)
,點(diǎn)
是曲線
與
的一個(gè)交點(diǎn),且這兩曲線在點(diǎn)
處的切線互相垂直,證明:存在唯一的實(shí)數(shù)
滿足題意,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論錯(cuò)誤的是 ( )
A. 命題“若
,則
”的逆否命題為“若
,則
”
B. 命題“
”的否定是 ![]()
C. 命題“若
,則
”的逆命題為真命題
D. 命題“若
,則
且
”的否命題是“若
,則m≠0或n≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
;
(Ⅰ)若m=1,求證:
在(0,+∞)上單調(diào)遞增;
(Ⅱ)若
,試討論g(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的一條直徑是橢圓
的長(zhǎng)軸,過(guò)橢圓
上一點(diǎn)
的動(dòng)直線
與圓
相交于點(diǎn)
,弦
的最小值為
.
(1)求圓
及橢圓
的方程;
(2) 已知點(diǎn)
是橢圓
上的任意一點(diǎn),點(diǎn)
是
軸上的一定點(diǎn),直線
的方程為
,若點(diǎn)
到定直線
的距離與到定點(diǎn)
的距離之比為
,求定點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由
算得,![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是 ( )
A. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)調(diào)查小組在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了150人,其中男性45人,女性55人。女性中有35人主要的休閑方式是室內(nèi)活動(dòng),另外20人主要的休閑方式是室外運(yùn)動(dòng);男性中15人主要的休閑方式是室內(nèi)活動(dòng),另外30人主要的休閑方式是室外運(yùn)動(dòng)。
參考數(shù)據(jù):![]()
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)
的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為休閑方式與性別有關(guān)?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com