科目:高中數(shù)學 來源:江西省新建二中2010屆高三上學期第一次月考數(shù)學理科試題 題型:013
曲線y=x-x3過點(-2,6)的切線的斜率為
A.-2
B.-11
C.-2或-11
D.2或-11
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年上海交大附中高三數(shù)學理總復習二數(shù)列的綜合應用練習卷(解析版) 題型:選擇題
已知曲線C:y=
(x>0)及兩點A1(x1,0)和A2(x2,0),其中x2>x1>0.過A1,A2分別作x軸的垂線,交曲線C于B1,B2兩點,直線B1B2與x軸交于點A3(x3,0),那么( )
A.x1,
,x2成等差數(shù)列 B.x1,
,x2成等比數(shù)列
C.x1,x3,x2成等差數(shù)列 D.x1,x3,x2成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學選修1-1 3.2導數(shù)的計算練習卷(解析版) 題型:填空題
過點(0,-4)與曲線y=x3+x-2相切的直線方程是 ______.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年河北省高三8月月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com