【題目】選修4-4:坐標系與參數方程
已知在極坐標系中,點
,
,
是線段
的中點,以極點為原點,極軸為
軸的正半軸,并在兩坐標系中取相同的長度單位,建立平面直角坐標系,曲線
的參數方程是
(
為參數).
(1)求點
的直角坐標,并求曲線
的普通方程;
(2)設直線
過點
交曲線
于
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】某體育公司對最近6個月內的市場占有率進行了統計,結果如表:
![]()
(1)可用線性回歸模型擬合
與
之間的關系嗎?如果能,請求出
關于
的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購
,
兩款車擴大市場,
,
兩款車各100輛的資料如表:
![]()
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設每輛車的使用壽命都是整數年,用每輛車使用壽命的頻率作為概率,以每輛車產生利潤的期望值作為決策依據,應選擇采購哪款車型?
參考數據:
,
,
,
.
參考公式:相關系數
;
回歸直線方程
,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限
(年)和所支出的年平均維修費用
(萬元)(即維修費用之和除以使用年限),有如下的統計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求
關于
的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式: ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱臺
的上下底面分別是邊長為2和4的正方形,
= 4且
⊥底面
,點
為
的中點.
![]()
(Ⅰ)求證:
面
;
(Ⅱ)在
邊上找一點
,使
∥面
,
并求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據市場分析,廣饒縣馳中集團某蔬菜加工點,當月產量在10噸至25噸時,月生產總成本
(萬元)可以看成月產量
(噸)的二次函數.當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本
(萬元)關于月產量
(噸)的函數關系;
(2)已知該產品銷售價為每噸1.6萬元,那么月產量為多少時,可獲最大利潤;
(3)當月產量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知橢圓
:
(
)的離心率
且橢圓
上的點到點
的距離的最大值為3.
(Ⅰ)求橢圓
的方程;
(Ⅱ)在橢圓
上,是否存在點
,使得直線
:
與圓
:
相交于不同的兩點
、
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m∈R,命題p:對任意x∈[0,1],不等式x2﹣2x﹣1≥m2﹣3m恒成立,命題q:存在x∈[﹣1,1],使得m≤2x﹣1;
(Ⅰ)若命題p為真命題,求m的取值范圍;
(Ⅱ)若命題q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,已知曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程與
的直角坐標方程;
(2)判斷曲線
是否相交,若相交,求出相交弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,傾斜角為
的直線
的參數方程為
.以坐標原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線
的普通方程和曲線
的直角坐標方程;
(2)已知點
.若點
的極坐標為
,直線
經過點
且與曲線
相交于
,
兩點,求
,
兩點間的距離
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com