【題目】已知橢圓
的離心率為
,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓
過(guò)橢圓
的上頂點(diǎn)
作圓
的兩條切線分別與橢圓
相交于
兩點(diǎn)(不同于點(diǎn)
),直線
的斜率分別為
.
(1)求橢圓
的方程;
(2)當(dāng)
變化時(shí),①求
的值;②試問(wèn)直線
是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.
【答案】(1)
;(2)見(jiàn)解析.
【解析】試題分析:(1)由題設(shè)知,
,
,又
,解得
,由此可得求橢圓
的方程;(2)①
,則有
,化簡(jiǎn)得
,對(duì)于直線
,同理有
,于是
是方程
的兩實(shí)根,故
,即可證明結(jié)果;②考慮到
時(shí),
是橢圓的下頂點(diǎn),
趨近于橢圓的上頂點(diǎn),故
若過(guò)定點(diǎn),則猜想定點(diǎn)在
軸上.
由
,得
,于是有
,直線
的斜率為
,直線
的方程為
,令
,得
,即可證明直線
過(guò)定點(diǎn).
試題解析:(1)由題設(shè)知,
,
,又
,
解得
.
故所求橢圓
的方程是
.
(2)①
,則有
,化簡(jiǎn)得
,
對(duì)于直線
,同理有
,
于是
是方程
的兩實(shí)根,故
.
考慮到
時(shí),
是橢圓的下頂點(diǎn),
趨近于橢圓的上頂點(diǎn),故
若過(guò)定點(diǎn),則猜想定點(diǎn)在
軸上.
由
,得
,于是有
.
直線
的斜率為
,
直線
的方程為
,
令
,得
,
故直線
過(guò)定點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
為常數(shù))
(1)若
,討論
的單調(diào)性;
(2)若對(duì)任意的
,都存在
使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
(1)若函數(shù)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)問(wèn):是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)證明:
,直線
都不是曲線
的切線;
(2)若
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域
,其中三角形區(qū)域
為生活區(qū),四邊形區(qū)域
為教學(xué)區(qū),
為學(xué)校的主要道路(不考慮寬度).
.
![]()
(1)求道路
的長(zhǎng)度;(2)求生活區(qū)
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
手機(jī)品牌 型號(hào) | I | II | III | IV | V |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機(jī)品牌 紅包個(gè)數(shù) | 優(yōu) | 非優(yōu) | 合計(jì) |
甲品牌(個(gè)) | |||
乙品牌(個(gè)) | |||
合計(jì) |
(1)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則為“非優(yōu)”,請(qǐng)完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(2)如果不考慮其他因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.
①求在型號(hào)I被選中的條件下,型號(hào)II也被選中的概率;
②以
表示選中的手機(jī)型號(hào)中搶到的紅包超過(guò)5個(gè)的型號(hào)種數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望
.
下面臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓
過(guò)橢圓
的上頂點(diǎn)
作圓
的兩條切線分別與橢圓
相交于
兩點(diǎn)(不同于點(diǎn)
),直線
的斜率分別為
.
(1)求橢圓
的方程;
(2)當(dāng)
變化時(shí),①求
的值;②試問(wèn)直線
是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線W,給出下列四個(gè)結(jié)論: ①曲線W關(guān)于原點(diǎn)對(duì)稱;
②曲線W關(guān)于直線y=x對(duì)稱;
③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于
;
④曲線W上的點(diǎn)到原點(diǎn)距離的最小值為2﹣
其中,所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°,過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
的最大值為( )
A.2
B.![]()
C.1
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com