【題目】在三棱柱
中,
,
,
,
,
。
![]()
(1)設
,異面直線
與
所成角的余弦值為
,求
的值;
(2)若
是
的中點,求平面
和平面
所成二面角的余弦值。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當實數p=e時,求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數f(x)的單調區間;
(Ⅲ)當p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,若橢圓
與圓
相交于
兩點,且圓
在橢圓
內的弧長為
.
(1)求
的值;
(2)過橢圓
的中心作兩條直線
交橢圓
于
和
四點,設直線
的斜率為
,
的斜率為
,且
.
①求直線
的斜率;
②求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調區間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設a>0,函數g(x)=|f(x)|,求證:g(x)在區間[﹣1,1]上的最大值不小于
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調區間;
(2)若f(x)存在極點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=3;
(3)設a>0,函數g(x)=∣f(x)∣,求證:g(x)在區間[0,2]上的最大值不小于 ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發展,居民收入逐年增長,下表是該地一建設銀行連續五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數據進行了處理,
得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程
,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線
由曲線
和曲線
組成,其中點
為曲線
所在圓錐曲線的焦點,點
為曲線
所在圓錐曲線的焦點,
![]()
(1)若
,求曲線
的方程;
(2)如圖,作直線
平行于曲線
的漸近線,交曲線
于點
,
求證:弦
的中點
必在曲線
的另一條漸近線上;
(3)對于(1)中的曲線
,若直線
過點
交曲線
于點
,求△
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5.
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)數列{bn}的前n項和為Sn,求證:數列{Sn+
}是等比數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com