分析:先畫出約束條件
的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數的解析式,分析后易得目標函數z=x+2y的最大值.
解答:
解:由約束條件
得如圖所示的三角形區域,
三個頂點坐標為A(0,1),(-1,0),C(1,0)
將三個代入得z的值分別為2,-1,1.
直線z=x+2y過點 A(0,1)時,z取得最大值為2;
故選B.
點評:在解決線性規劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數⇒④驗證,求出最優解.