如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,M是PD的中點,AB=2,∠BAD=60°.![]()
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當四棱錐P-ABCD的體積等于
時,求PB的長.
科目:高中數學 來源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M為A1B與AB1的交點,N為棱B1C1的中點.
(1)求證:MN∥平面AA1C1C;
(2)若AC=AA1,求證:MN⊥平面A1BC.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在棱長為
的正方體
中,點
是棱
的中點,點
在棱
上,且滿足
.![]()
(1)求證:
;
(2)在棱
上確定一點
,使
、
、
、
四點共面,并求此時
的長;
(3)求平面
與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中點,F為ED的中點.
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.![]()
(1)求直線B1C1與平面A1BC1所成角的正弦值;
(2)在線段BC1上確定一點D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com