已知二次函數(shù)f(x)=ax2+x,若對任意x1、x2∈R,恒有2f
≤f(x1)+f(x2)成立,不等式f(x)<0的解集為A.
(1)求集合A;
(2)設(shè)集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數(shù)g(x)=xf(x)在區(qū)間
內(nèi)單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a=-1時(shí),證明方程f(x)=2x3-1僅有一個(gè)實(shí)數(shù)根;
(3)當(dāng)x∈[0,1]時(shí),試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費(fèi)用與所建的球場數(shù)有關(guān),當(dāng)該球場建n座時(shí),每平方米的平均建筑費(fèi)用
表示,且
(其中
),又知建5座球場時(shí),每平方米的平均建筑費(fèi)用為400元.
(1)為了使該球場每平方米的綜合費(fèi)用最省(綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),公司應(yīng)建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費(fèi)用不超過820元,最多建幾座網(wǎng)球場?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(
為常數(shù)),函數(shù)
定義為:對每一個(gè)給定的實(shí)數(shù)
,![]()
(1)求證:當(dāng)
滿足條件
時(shí),對于
,
;
(2)設(shè)
是兩個(gè)實(shí)數(shù),滿足
,且
,若
,求函數(shù)
在區(qū)間
上的單調(diào)遞增區(qū)間的長度之和.(閉區(qū)間
的長度定義為
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,
.
(Ⅰ)證明:
;
(Ⅱ)求證:在數(shù)軸上,
介于
與
之間,且距
較遠(yuǎn);
(Ⅲ)在數(shù)軸上,
之間的距離是否可能為整數(shù)?若有,則求出這個(gè)整數(shù);若沒有,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長為20m的鐵絲網(wǎng),一邊靠墻,圍成三個(gè)大小相等、緊緊相連的長方形,那么長方形長、寬、各為多少時(shí),三個(gè)長方形的面積和最大?![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com