理科(本小題14分)已知函數(shù)
,當(dāng)
時(shí),函數(shù)
取得極大值.
(Ⅰ)求實(shí)數(shù)
的值;(Ⅱ)已知結(jié)論:若函數(shù)
在區(qū)間
內(nèi)導(dǎo)數(shù)都存在,且
,則存在
,使得
.試用這個(gè)結(jié)論證明:若
,函數(shù)
,則對(duì)任意
,都有
;(Ⅲ)已知正數(shù)
滿足
求證:當(dāng)
,
時(shí),對(duì)任意大于
,且互不相等的實(shí)數(shù)
,都有![]()
(Ⅰ)
.
(Ⅱ)![]()
![]()
當(dāng)
時(shí),
,
單調(diào)遞增,
;
當(dāng)
時(shí),
,
單調(diào)遞減,
;(Ⅲ)用數(shù)學(xué)歸納法證明.
解析試題分析:(Ⅰ)
. 由
,得
,此時(shí)
.
當(dāng)
時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞增;
當(dāng)
時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞減.
函數(shù)
在
處取得極大值,故
. 3分
(Ⅱ)令
, 4分
則
.函數(shù)
在
上可導(dǎo),
存在
,使得
.
又![]()
![]()
當(dāng)
時(shí),
,
單調(diào)遞增,
;
當(dāng)
時(shí),
,
單調(diào)遞減,
;
故對(duì)任意
,都有
. 8分
(Ⅲ)用數(shù)學(xué)歸納法證明.
①當(dāng)
時(shí),
,且
,
,
,
由(Ⅱ)得
,即
,
當(dāng)
時(shí),結(jié)論成立. 9分
②假設(shè)當(dāng)
時(shí)結(jié)論成立,即當(dāng)
時(shí),
. 當(dāng)
時(shí),設(shè)正數(shù)
滿足
令
,
則
,且
.![]()
![]()
13分
當(dāng)
時(shí),結(jié)論也成立.
綜上由①②,對(duì)任意
,
,結(jié)論恒成立. 14分
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式的證明,數(shù)學(xué)歸納法。
點(diǎn)評(píng):難題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,是導(dǎo)數(shù)的應(yīng)用中的基本問題。本題(III)應(yīng)用數(shù)學(xué)歸納法證明不等式,難度較大。涉及對(duì)數(shù)函數(shù),要特別注意函數(shù)的定義域。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(I)求函數(shù)
圖象上的點(diǎn)
處的切線方程;
(Ⅱ)已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),![]()
對(duì)于任意的
,
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-
.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若曲線
在點(diǎn)
處的切線與直線
平行,求出這條切線的方程;
(Ⅱ)若
,討論函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)對(duì)任意的
,恒有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
,
(1)若函數(shù)
在
處的切線方程為
,求實(shí)數(shù)
,
的值;
(2)若
在其定義域內(nèi)單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,是否存在實(shí)數(shù)
,使函數(shù)在
上遞減,在
上遞增?若存在,求出所有
值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
.若至少存在一個(gè)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
;
(1)當(dāng)
時(shí),判斷
在定義域上的單調(diào)性;
(2)求
在
上的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com