【題目】已知函數(shù)
,其中
為實(shí)數(shù).
(1)若函數(shù)
為定義域上的單調(diào)函數(shù),求
的取值范圍.
(2)若
,滿(mǎn)足不等式
成立的正整數(shù)解有且僅有一個(gè),求
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)分析當(dāng)
時(shí)的單調(diào)性,可得
的單調(diào)性,由二次函數(shù)的單調(diào)性,可得
的范圍;
(2)分別討論當(dāng)
,當(dāng)
時(shí),當(dāng)
時(shí),當(dāng)
,結(jié)合函數(shù)的單調(diào)性和最值,即可得到所求范圍.
(1)由題意,當(dāng)
時(shí),
為減函數(shù),
當(dāng)
時(shí),
,
若
時(shí),
也為減函數(shù),且
,
此時(shí)函數(shù)
為定義域上的減函數(shù),滿(mǎn)足條件;
若
時(shí),
在
上單調(diào)遞增,則不滿(mǎn)足條件.
綜上所述,
.
(2)由函數(shù)的解析式,可得
,
當(dāng)
時(shí),
,不滿(mǎn)足條件;
當(dāng)
時(shí),
為定義域上的減函數(shù),僅有
成立,滿(mǎn)足條件;
當(dāng)
時(shí),在
上,僅有
,
對(duì)于
上,
的最大值為
,
不存在
滿(mǎn)足
,滿(mǎn)足條件;
當(dāng)
時(shí),在
上,不存在整數(shù)
滿(mǎn)足
,
對(duì)于
上,
,
不存在
滿(mǎn)足
,不滿(mǎn)足條件;
綜上所述,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿(mǎn)足
。
(1)求證:A,B,C三點(diǎn)共線;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0,
],函數(shù)f(x)=
(2m+
)|
|+m2的最小值為5,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,底面
為矩形,
⊥平面
,
為
的中點(diǎn).
(Ⅰ)證明:
∥平面
;
(Ⅱ)設(shè)二面角
為60°,
=1,
=
,求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的焦距為
,且
,圓
與
軸交于點(diǎn)
,
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(1)求圓
與橢圓
的方程;
(2)圓
的切線
交橢圓
于點(diǎn)
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩種棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位:
) 組成一個(gè)樣本,且將纖維長(zhǎng)度超過(guò)315
的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:
![]()
(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長(zhǎng)度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);
(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;
(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
:
,
,
,
為平面內(nèi)一動(dòng)點(diǎn),若以線段
為直徑的圓與圓
相切.
(1)證明
為定值,并寫(xiě)出點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,直線
過(guò)
交
于
,
兩點(diǎn),過(guò)
且與
垂直的直線與
交于
,
兩點(diǎn),求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,且
).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值.
【答案】(Ⅰ)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時(shí),
;當(dāng)
時(shí),
.
【解析】【試題分析】(I)利用
的二階導(dǎo)數(shù)來(lái)研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對(duì)
分類(lèi)討論求得函數(shù)在
不同取值時(shí)的最大值.
【試題解析】
(Ⅰ)
,
設(shè)
,則
.
∵
,
,∴
在
上單調(diào)遞增,
從而得
在
上單調(diào)遞增,又∵
,
∴當(dāng)
時(shí),
,當(dāng)
時(shí),
,
因此,
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知
.
∵
,
,
∴
.
設(shè)
,
則
.
∵當(dāng)
時(shí),
,∴
在
上單調(diào)遞增.
又∵
,∴當(dāng)
時(shí),
;當(dāng)
時(shí),
.
①當(dāng)
時(shí),
,即
,這時(shí),
;
②當(dāng)
時(shí),
,即
,這時(shí),
.
綜上,
在
上的最大值為:當(dāng)
時(shí),
;
當(dāng)
時(shí),
.
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問(wèn)題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與
軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過(guò)對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問(wèn)題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫(xiě)出圓
的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線
與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com