設(shè)等差數(shù)列
的公差為
,點(diǎn)
在函數(shù)
的圖象上(
).
(1)若
,點(diǎn)
在函數(shù)
的圖象上,求數(shù)列
的前
項(xiàng)和
;
(2)若
,學(xué)科網(wǎng)函數(shù)
的圖象在點(diǎn)
處的切線在
軸上的截距為
,求數(shù)列
的前
項(xiàng)和
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
是等差數(shù)列,
,數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,若
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)等差數(shù)列
的前n項(xiàng)和為
,若
,且
,
,
成等比數(shù)列,
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列
的前n項(xiàng)和為
,且滿足條件![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,若對(duì)任意正整數(shù)
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}是一個(gè)公差為
的等差數(shù)列,已知它的前10項(xiàng)和為
,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是遞增的等差數(shù)列,
,
是方程
的根。
(I)求
的通項(xiàng)公式;
(II)求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
滿足![]()
(1)證明:數(shù)列
是等差數(shù)列;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
滿足:
,且
、
、
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式.
(2)記
為數(shù)列
的前
項(xiàng)和,是否存在正整數(shù)
,使得
若存在,求
的最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013·天津模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點(diǎn)P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{an·bn}的前n項(xiàng)和Dn.
(3)設(shè)cn=an·sin2
-bn·cos2
(n∈N*),求數(shù)列{cn}的前2n項(xiàng)和T2n.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com