我國加入WTO后,根據(jù)達(dá)成的協(xié)議,若干年內(nèi)某產(chǎn)品關(guān)稅與市場供應(yīng)量
的關(guān)系允許近似的滿足:
(其中
為關(guān)稅的稅率,且
,
為市場價格,
、
為正常數(shù)),當(dāng)
時的市場供應(yīng)量曲線如圖:![]()
(1)根據(jù)圖象求
、
的值;
(2)若市場需求量為
,它近似滿足
.當(dāng)
時的市場價格稱為市場平衡價格.為使市場平衡價格控制在不低于9元,求稅率
的最小值.
(1)
,(2)
.
解析試題分析:(1)求
、
的值,需列兩個獨(dú)立條件,利用圖象過兩點(diǎn):
,
得方程組
,注意隱含條件
可避開討論,(2)由“市場平衡價格”含義得出
與
的函數(shù)關(guān)系式,這是一個二次函數(shù),結(jié)合定義域可求出
的最小值.
試題解析:(1)由圖象知函數(shù)圖象過:
,
,
, 2分
得
, 4分
解得:
; 6分
(2)當(dāng)
時,
,即
, 8分
化簡得:
10分
令
,
,
設(shè)
,對稱軸為![]()
,
所以,當(dāng)
時,
取到最大值:
,即
,
解得:
,即稅率的最小值為
. 15分
答:稅率
的最小值為
. 16分
考點(diǎn):函數(shù)解析式,函數(shù)最值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex,x∈R.
(1)若直線y=kx+1與f(x)的反函數(shù)的圖像相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤L最大?并求出L的最大值Q(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e8/1/3hoy5.png" style="vertical-align:middle;" />,對定義域內(nèi)的任意x,滿足
,當(dāng)
時,
(a為常),且
是函數(shù)
的一個極值點(diǎn),
(1)求實(shí)數(shù)a的值;
(2)如果當(dāng)
時,不等式
恒成立,求實(shí)數(shù)m的最大值;
(3)求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且
的圖象連續(xù)不間斷. 若函數(shù)
滿足:對于給定的
(
且
),存在
,使得
,則稱
具有性質(zhì)
.
(1)已知函數(shù)
,
,判斷
是否具有性質(zhì)
,并說明理由;
(2)已知函數(shù)
若
具有性質(zhì)
,求
的最大值;
(3)若函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且
的圖象連續(xù)不間斷,又滿足
,
求證:對任意
且
,函數(shù)
具有性質(zhì)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)判斷函數(shù)
在
的單調(diào)性并用定義證明;
(2)令
,求
在區(qū)間
的最大值的表達(dá)式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
滿足
,當(dāng)
時
;當(dāng)
時
.
(Ⅰ)求函數(shù)
在(-1,1)上的單調(diào)區(qū)間;
(Ⅱ)若
,求函數(shù)
在
上的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
的導(dǎo)函數(shù)的圖像與直線
平行,且
在
處取得極小值
.設(shè)
.
(1)若曲線
上的點(diǎn)
到點(diǎn)
的距離的最小值為
,求
的值;
(2)
如何取值時,函數(shù)
存在零點(diǎn),并求出零點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com