【題目】已知函數(shù)
,(其中
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(Ⅰ)求
的解析式;
(Ⅱ)當(dāng)
,求
的值域.
【答案】(1)
(2)[-1,2]
【解析】試題分析:根據(jù)正弦型函數(shù)圖象特點,先分析出函數(shù)的振幅和周期,最低點為
,得
,周期
,則
,又函數(shù)圖象過
,代入得
,故
,又
,從而確定
,得到
,再求其單調(diào)增區(qū)間.
(2)分析
,結(jié)合正弦函數(shù)圖象,可知當(dāng)
,即
時,
取得最大值
;當(dāng)
,即
時,
取得最小值
,故
的值域為
.
試題解析:(1)依題意,由最低點為
,得
,又周期
,∴
.
由點
在圖象上,得
,
∴
,
,
.
∵
,∴
,∴
.
由
,
,得
.
∴函數(shù)
的單調(diào)增區(qū)間是
.
(2)
,∴
.
當(dāng)
,即
時,
取得最大值
;
當(dāng)
,即
時,
取得最小值
,故
的值域為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量X~B(6,0.4),則當(dāng)η=-2X+1時,D(η)=( )
A.-1.88
B.-2.88
C.5. 76
D.6.76
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘面試,每次從試題庫隨機(jī)調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補(bǔ)一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學(xué)期望)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘輪船都要在某個泊位停靠6小時,假定它們在一晝夜的時間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在停靠泊位時必須等待的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)
,f(x)的最小值是
,最大值是3,求實數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若
,則f(x)的一個單調(diào)遞增區(qū)間可以是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=log2(3-x).
(1)若g(x)=f(2+x)+f(2-x),判斷g(x)的奇偶性;
(2)記h(x)是y=f(3-x)的反函數(shù),設(shè)A、B、C是函數(shù)h(x)圖象上三個不同的點,它們的縱坐標(biāo)依次是m、m+2、m+4且m≥1;試求△ABC面積的取值范圍,并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com