2.7063.8416.63510.828非高收入族高收入族總計贊成不贊成總計(1)根據已知條件完成下面的列聯表.并判斷有多大的把握認為贊不贊成樓市限購令與收入高低有關?(2)現從月收入在的人群中隨機抽取兩人.求所抽取的兩人中至少有一人贊成樓市限購令的概率.">
【題目】為了解某市市民對政府出臺樓市限購令的態度,在該市隨機抽取了50名市民進行調查,他們月收入(單位:百元)的頻數分布及對樓市限購令的贊成人數如下表:
月收入 |
|
|
|
|
|
|
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 8 | 5 | 2 | 1 |
將月收入不低于55百元的人群稱為“高收入族”,月收入低于55百元的人群稱為“非高收入族”.
附:
| 0.100 | 0.050 | 0.010 | 0.001 /td> |
| 2.706 | 3.841 | 6.635 | 10.828 |
![]()
非高收入族 | 高收入族 | 總計 | |
贊成 | |||
不贊成 | |||
總計 |
(1)根據已知條件完成下面的
列聯表,并判斷有多大的把握認為贊不贊成樓市限購令與收入高低有關?
(2)現從月收入在
的人群中隨機抽取兩人,求所抽取的兩人中至少有一人贊成樓市限購令的概率.
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體
中,
,
,
,
分別是棱
,
,
,
的中點,點
,
分別在棱
,
上移動,且
.
![]()
(1)當
時,證明:直線
平面
;
(2)是否存在
,使面
與面
所成的二面角為直二面角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數
在定義域內存在實數
,使得
成立,則稱函數
有“飄移點”
.
Ⅰ
試判斷函數
及函數
是否有“飄移點”并說明理由;
Ⅱ
若函數
有“飄移點”,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知
,
,求證:
.
證明:構造函數
,
即![]()
.
因為對一切
,恒有
,
所以
,從而得
.
(1)若
,
,請寫出上述結論的推廣式;
(2)參考上述證法,對你推廣的結論加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,且保費與上一年度車輛發生道路交通事故的情況相聯系.發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.先把高二年級的2000名學生編號:1到2000,再從編號為1到50的學生中隨機抽取1名學生,其編號為
,然后抽取編號為
,
,
,……的學生,這種抽樣方法是系統抽樣法.
B.一組數據的方差為
,平均數為
,將這組數據的每一個數都乘以2,所得的一組新數據的方差和平均數為
,
.
C.若兩個隨機變量的線性相關性越強,則相關系數
的值越接近于1.
D.若一組數據1,
,3的平均數是2,則該組數據的方差是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線
.
(1)求證:無論
取何值,直線
始終經過第一象限;
(2)若直線
與
軸正半軸交于
點,與
軸正半軸交于
點,
為坐標原點,設
的面積為
,求
的最小值及此時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com