【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程
1表示焦點在x軸上的雙曲線.
(1)命題q為真命題,求實數k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實數k的取值范圍.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知在平面直角坐標系
中,直線
的參數方程為
(
為參數),曲線
的方程為
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求直線
和曲線
的極坐標方程;
(2)曲線
分別交直線
和曲線
于點
,求
的最大值及相應
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )
A.
B. π C. 2 D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,焦距為
.斜率為k的直線l與橢圓M有兩個不同的交點A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)設
,直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.若C,D和點
共線,求k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四組函數中,表示同一函數的是
A.f(x)=![]()
,g(x)=x2–1B.f(x)=
,g(x)=x+1
C.f(x)=
,g(x)=(
)2D.f(x)=|x|,g(t)=![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數方程為
(
為參數),以平面直角坐標系的原點為極點,正半軸為極軸,取相同的長度單位建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
和曲線
的直角坐標方程,并指明曲線
的形狀;
(2)設直線
與曲線
交于
兩點,
為坐標原點,且
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩增長.記2009年為第1年,且前4年中,第x年與年產量f(x) 萬件之間的關系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三種函數模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=log
x+a.
(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;
(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少30%,試根據所建立的函數模型,確定2015年的年產量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓C:
,定義橢圓C的“相關圓”方程為
,若拋物線
的焦點與橢圓C的一個焦點重合,且橢圓C短軸的一個端點和其兩個焦點構成直角三角形。
(I)求橢圓C的方程和“相關圓”E的方程;
(II)過“相關圓”E上任意一點P作“相關圓”E的切線l與橢圓C交于A,B兩點,O為坐標原點。
(i)證明∠AOB為定值;
(ii)連接PO并延長交“相關圓”E于點Q,求△ABQ面積的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com