【題目】如圖,平行四邊形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分別為BC,PE的中點,AF⊥平面PED. ![]()
(1)求證:PA⊥平面ABCD;
(2)求直線BF與平面AFD所成角的正弦值.
【答案】
(1)解:連接AE,
∵AF⊥平面PED,ED平面PED,
∴AF⊥ED,
在平行四邊形ABCD中,BC=2AB=4,∠ABC=60°,
∴AE=2,
,
∴AE2+ED2=AD2,∴AE⊥ED,
又∵AF∩AE=A,AF平面PAE,PA平面PAE,
∴ED⊥平面PAE,∵PA平面PAE,
∴ED⊥PA,
又PA⊥AD,AD∩ED=D,AE平面ABCD,AD平面ABCD,
∴PA⊥平面ABCD
![]()
(2)解:以E為坐標原點,以EA,ED為x軸,y軸建立如圖所示的空間直角坐標系,
則A(0,2,0),
,
,
∵AF⊥平面PED,所以AF⊥PE,
又F為PE中點,∴PA=AE=2,
∴P(0,2,2),F(0,1,1),
∴
,
,
,
設平面AFD的法向量為
,
由
,
得,
,
令x=1,得
.
設直線BF與平面AFD所成的角為θ,則:
,
即直線BF與平面AFD所成角的正弦值為
.
![]()
【解析】(1)利用勾股定理的逆定理得出AE⊥DE,由AF⊥平面PED得DE⊥AF,故而DE⊥平面PAE,于是DE⊥PA,結合PA⊥AD得出PA⊥平面ABCD;(2)以E為原點建立空間坐標系,求出平面ADF的法向量
,則|cos<
>|為直線BF與平面AFD所成角的正弦值.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( ) ![]()
A.①③
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).![]()
(1)求點D的坐標及直線BC的解析式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點E關于AC的對稱點E’,當n為何值時,A E’分別于AC,BC,AB垂直?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關于x的不等式f(x)<g(x)有解,求實數a的取值范圍;
(Ⅱ)若關于x的不等式f(x)<g(x)的解集為
,求a+b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=16,定點F2(1,0),A是圓F1上的一動點,線段F2A的垂直平分線交半徑F1A于P點. (Ⅰ)求P點的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個頂點都在曲線C上,且對角線EG,FH過原點O,若kEGkFH=﹣
,求證:四邊形EFGH的面積為定值,并求出此定值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知橢圓C:
=1(a>0)的焦點在x軸上,且橢圓C的焦距為2. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點R(4,0)的直線l與橢圓C交于兩點P,Q,過P作PN⊥x軸且與橢圓C交于另一點N,F為橢圓C的右焦點,求證:三點N,F,Q在同一條直線上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列敘述中正確的是( )
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2﹣4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D.l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com