【題目】如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>0)與y軸的交點為A,與x軸的交點分別為B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.![]()
(1)求拋物線的解析式;
(2)當0<t≤8時,求△APC面積的最大值;
(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.
【答案】
(1)
解:由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,
∴x1+x2=8,
由 ![]()
解得: ![]()
∴B(2,0)、C(6,0)
則4m﹣16m+4m+2=0,
解得:m=
,
∴該拋物線解析式為:y= ![]()
(2)
解:可求得A(0,3)
設直線AC的解析式為:y=kx+b,
∵ ![]()
∴ ![]()
∴直線AC的解析式為:y=﹣
x+3,
要構成△APC,顯然t≠6,分兩種情況討論:
①當0<t<6時,設直線l與AC交點為F,則:F(t,﹣
),
∵P(t,
),∴PF=
,
∴S△APC=S△APF+S△CPF
= ![]()
= ![]()
=
,
此時最大值為:
,
②當6<t≤8時,設直線l與AC交點為M,則:M(t,﹣
),
∵P(t,
),∴PM=
,
∴S△APC=S△APM﹣S△CPM= ![]()
= ![]()
=
,
當t=8時,取最大值,最大值為:12,
綜上可知,當0<t≤8時,△APC面積的最大值為12
(3)
解:方法一:
如圖,連接AB,則△AOB中,∠AOB=90°,AO=3,BO=2,
Q(t,3),P(t,
),
① 當2<t<8時,AQ=t,PQ=
,
若:△AOB∽△AQP,則:
,
即:
,
∴t=0(舍),或t=
,
若△AOB∽△PQA,則:
,
即:
,
∴t=0(舍)或t=2(舍),
②當t>8時,AQ′=t,PQ′=
,
若:△AOB∽△AQP,則:
,
即:
,
∴t=0(舍),或t=
,
若△AOB∽△PQA,則:
,
即:
,
∴t=0(舍)或t=14,
∴t=
或t=
或t=14.
方法二:
若以A、P、Q為頂點的三角形與△AOB相似,
則
或
,
設P(t,
)(t>2)
∴Q(t,3)
② |
|=
,∴|
|=
,∴t1=2(舍),t2=14,
②|
|=
,∴|
|=
,∴t1=
,t2=
,
綜上所述:存在:t1=
,t2=
,t3=14.
![]()
![]()
【解析】(1)認真審題,直接根據題意列出方程組,求出B,C兩點的坐標,進而可求出拋物線的解析式;(2)分0<t<6時和6<t≤8時兩種情況進行討論,據此即可求出三角形的最大值;(3)以點D為分界點,分2<t≤8時和t>8時兩種情況進行討論,再根據三角形相似的條件,即可得解.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,1)、點B(0,1+t)、C(0,1﹣t)(t>0),點P在以D(3,3)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一條筆直的公路l穿過草原,公路邊有一消防站A,距離公路5
千米的地方有一居民點B,A、B的直線距離是10
千米.一天,居民點B著火,消防員受命欲前往救火.若消防車在公路上的最快速度是80千米/小時,而在草地上的最快速度是40千米/小時,則消防車在出發后最快經過小時可到達居民點B.(友情提醒:消防車可從公路的任意位置進入草地行駛.) ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:
,OE平分
,點A、B、C分別是射線OM、OE、ON上的動點
、B、C不與點O重合
,連接AC交射線OE于點
設
.
![]()
如圖1,若
,則
的度數是______;
當
時,
______;當
時,
______.
如圖2,若
,則是否存在這樣的x的值,使得
中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:
,OE平分
,點A、B、C分別是射線OM、OE、ON上的動點
、B、C不與點O重合
,連接AC交射線OE于點
設
.
![]()
如圖1,若
,則
的度數是______;
當
時,
______;當
時,
______.
如圖2,若
,則是否存在這樣的x的值,使得
中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在
中,
,
于點F,
于點M,
,
,已知動點E以
的速度從A點向F點運動,同時動點G以
的速度從C點向A點運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t.
![]()
______;
求
的值;
在整個運動過程中,當t取何值時,
與
全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=60°,點E,F分別在AB,AC上,把∠A沿著EF對折,使點A落在BC上點D處,且使ED⊥BC. ![]()
(1)猜測AE與BE的數量關系,并說明理由;
(2)求證:四邊形AEDF是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1個單位長度,向右平移5個單位長度,可以得到三角形A′B′C′.
(Ⅰ)在圖中畫出△A′B′C′;
(Ⅱ)直接寫出點A′、B′、C′的坐標;
(Ⅲ)寫出A′C′與AC之間的位置關系和大小關系.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com