如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.
![]()
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=
,求AD的長.
(1)證明見試題解析;(2)2.
【解析】
試題分析:(1)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;
(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.
試題解析:(1)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;
(2)解:過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=
,∴OE=
,又∵OA=2,∴在Rt△OAE中,
,∴AD=2AE=2.
![]()
考點:1.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com