【題目】如圖,在平面直角坐標(biāo)系中,
為坐標(biāo)原點(diǎn),矩形
的頂點(diǎn)
、
,將矩形
的一個(gè)角
沿直線
折疊,使得點(diǎn)
落在對(duì)角線
上的點(diǎn)
處,折痕與
軸交于點(diǎn)
.
![]()
(1)線段
的長(zhǎng)度為__________;
(2)求直線
所對(duì)應(yīng)的函數(shù)解析式;
(3)若點(diǎn)
在線段
上,在線段
上是否存在點(diǎn)
,使四邊形
是平行四邊形?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)15;(2)
;(3)![]()
【解析】
(1)根據(jù)勾股定理即可解決問(wèn)題;
(2)設(shè)AD=x,則OD=OA=AD=12-x,根據(jù)軸對(duì)稱的性質(zhì),DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在Rt△OED中,根據(jù)OE2+DE2=OD2,構(gòu)建方程即可解決問(wèn)題;
(3)過(guò)點(diǎn)E作EP∥BD交BC于點(diǎn)P,過(guò)點(diǎn)P作PQ∥DE交BD于點(diǎn)Q,則四邊形DEPQ是平行四邊形,再過(guò)點(diǎn)E作EF⊥OD于點(diǎn)F,想辦法求出最小PE的解析式即可解決問(wèn)題。
解:(1)在Rt△ABC中,∵OA=12,AB=9,
![]()
故答案為15.
(2)如圖,
![]()
設(shè)
,則![]()
根據(jù)軸對(duì)稱的性質(zhì),
,
又
,
∴
,
在
中,
,
即
,則
,
∴
,
∴
設(shè)直線
所對(duì)應(yīng)的函數(shù)表達(dá)式為:![]()
則
,
解得
∴直線
所對(duì)應(yīng)的函數(shù)表達(dá)式為:
.
故答案為:![]()
(3)過(guò)點(diǎn)
作
交
于點(diǎn)
,過(guò)點(diǎn)
作
交
于點(diǎn)
,則四邊形
是平行四邊形,再過(guò)點(diǎn)
作
于點(diǎn)
,
![]()
由![]()
得
,即點(diǎn)
的縱坐標(biāo)為
,
又點(diǎn)
在直線
:
上,
∴
,解得
,
由于
,所以可設(shè)直線
,
∵
在直線
上
∴
,解得
∴直線
為
,
令
,則
,解得
,
∴![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF的長(zhǎng)為( 。
![]()
A. 2
B. 2 C.
D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,記
與
的函數(shù)
(
≠0,n≠0)的圖象為圖形G, 已知圖形G與
軸交于點(diǎn)
,當(dāng)
時(shí),函數(shù)
有最小(或最大)值n, 點(diǎn)B的坐標(biāo)為(
,
),點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)分別為C、D,若A、B、C、D中任何三點(diǎn)都不在一直線上,且對(duì)角線AC,BD的交點(diǎn)與原點(diǎn)O重合,則稱四邊形ABCD為圖形G的伴隨四邊形,直線AB為圖形G的伴隨直線.
![]()
(1)如圖,若函數(shù)
的圖象記為圖形G,求圖形G的伴隨直線的表達(dá)式;
(2)如圖,若圖形G的伴隨直線的表達(dá)式是
,且伴隨四邊形的面積為12,求
與
的函數(shù)
(m>0,n <0)的表達(dá)式;
![]()
(3)如圖,若圖形G的伴隨直線是
,且伴隨四邊形ABCD是矩形,求點(diǎn)B的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷售,售價(jià)為10元/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系.
![]()
(1)求y與x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;
(2)若該節(jié)能產(chǎn)品的日銷售利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式,并求出日銷售利潤(rùn)不超過(guò)1040元的天數(shù)共有多少天?
(3)若5≤x≤17,直接寫出第幾天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥研究所開發(fā)了一種新藥,在試驗(yàn)效果時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,服藥后血液中的含藥量逐漸增多,一段時(shí)間后達(dá)到最大值,接著藥量逐步衰減直至血液中含藥量為0,每毫升血液中含藥量
(微克)隨時(shí)間
(小時(shí))的變化如圖所示,下列說(shuō)法:(1)2小時(shí)血液中含藥量最高,達(dá)每毫升6微克.(2)每毫升血液中含藥量不低于4微克的時(shí)間持續(xù)達(dá)到了6小時(shí).(3)如果一病人下午6:00按規(guī)定劑量服此藥,那么,第二天中午12:00,血液中不再含有該藥,其中正確說(shuō)法的個(gè)數(shù)是()
![]()
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實(shí)數(shù)x的值不可能
是( )
A. 0 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來(lái)證明勾股定理,過(guò)程如下
![]()
如圖(1)∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過(guò)點(diǎn)D作DF⊥BC交BC的延長(zhǎng)線于點(diǎn)F,則DF=b-a
S四邊形ADCB=
S四邊形ADCB=![]()
∴
化簡(jiǎn)得:a2+b2=c2
請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點(diǎn)B,直線l2經(jīng)過(guò)點(diǎn)D(0,5),與直線l1交于點(diǎn)C(﹣1,m),且與x軸交于點(diǎn)A,
(1)求點(diǎn)C的坐標(biāo)及直線l2的解析式;
(2)求△ABC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角
中,已知
,
邊的垂直平分線交
于點(diǎn)
,交
于點(diǎn)
,且
,
,則
的長(zhǎng)是________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com