【題目】如圖,在ABCD中,AM=
AD,BD與MC相交于點O,則S△MOD:S△COD= . ![]()
科目:初中數學 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為( ) ![]()
A.(3,1)
B.(3,
)
C.(3,
)
D.(3,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.![]()
(1)如圖1.過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大小;
(2)如圖2,D為
上一點,且OD經過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個同心圓,大圓的弦AB與小圓相切于點P,大圓的弦CD經過點P,且CD=13,PD=4,則兩圓組成的圓環的面積是( ) ![]()
A.16π
B.36π
C.52π
D.81π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE. ![]()
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計算結果精確到1m) (參考數據:sin15°=
,cos15°=
,tan15°=
)![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,A,B,C三點的坐標為(
,0)、(3
,0)、(0,5),點D在第一象限,且∠ADB=60°,則線段CD的長的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE. ![]()
(1)求證:△ACD∽△AEC;
(2)當
=
時,求tanE;
(3)若AD=4,AC=4
,求△ACE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數關系的圖象是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com