【題目】如圖,在平面直角坐標系中,直線l1的解析式為
,直線l2的解析式為
,與x軸、y軸分別交于點A、點B,直線l1與l2交于點C.
![]()
![]()
(1)求點A、點B、點C的坐標,并求出△COB的面積;
(2)若直線l2上存在點P(不與B重合),滿足S△COP=S△COB,請求出點P的坐標;
(3)在y軸右側有一動直線平行于y軸,分別與l1,l2交于點M、N,且點M在點N的下方,y軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點Q的坐標;若不存在,請說明理由.
【答案】(1)A(6,0),B(0,3),C(2,2);面積為3;(2)P(4,1);(3)Q(0,
)或B(0,
)或C(0,
)
【解析】
(1)由一次函數解析式求出點A、B坐標,聯立解析式解方程組得到點
;然后根據
的面積
,即可得到三角形面積;
(2)設點
,
,則
,依據坐標系兩點距離公式列方程可得
,即可求解;
(3)分
、
、
三種情況,分別畫出符合條件的圖形,根據線段相等關系列方程求解即可.
解:(1)直線
的解析式為
,
當x=0時,y=3,
當y=0時,
,解得:x=6,
∴與
軸、
軸分別交于點
、點
坐標分別為
、
,
∵直線l1與l2交于點C.
聯立得方程組:
,解得:
,
故點
;
的面積
;
(2)設點
,
,則
,
則
,
解得:
或0(舍去
,
故點
;
(3)設點
、
、
的坐標分別為
、
、
,
①當
時,
![]()
,
,
,
,
,
,
,
,
即:
,
解得:
,
∴Q點坐標為:![]()
②當
時,
則
,即:
,解得:
,
;
∴Q點坐標為:![]()
![]()
③當
時,
![]()
同②理可得:
;
∴Q點坐標為:![]()
綜上,點
的坐標為
或
或
.
科目:初中數學 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側, BD⊥AE于D, CE⊥AE于E.
![]()
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數量關系如何? 請給予證明;
(3)若直線AE繞A點旋轉到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數量關系如何? 請直接寫出結果, 不需證明.
(4)根據以上的討論,請用簡潔的語言表達BD與DE,CE的數量關系。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,給出如下定義:
對于⊙C及⊙C外一點P,M,N是⊙C上兩點,當∠MPN最大時,稱∠MPN為點P關于⊙C的“視角”.![]()
(1)如圖,⊙O的半徑為1,
①已知點A(0,2),畫出點A關于⊙O的“視角”;若點P在直線x=2上,則點P關于⊙O的最大“視角”的度數 ;
(2)在第一象限內有一點B(m,m),點B關于⊙O的“視角”為60°,求點B的坐標.
(3)若點P在直線y=﹣
x+2上,且點P關于⊙O的“視角”大于60°,求點P的橫坐標xP的取值范圍.
(4)⊙C的圓心在x軸上,半徑為1,點E的坐標為(0,1),點F的坐標為(0,﹣1),若線段EF上所有的點關于⊙C的“視角”都小于120°,直接寫出點C的橫坐標xC的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在8×8的正方形網格中,每個小正方形的邊長都為1個單位長度,△ABC的頂點都在正方形網格的格點上.
(1)將△ABC經平移后得到△A′B′C′,點A的對應點是點A′.畫出平移后所得的△A′B′C′;
(2)連接AA′、CC′,則四邊形AA′C′C的面積為 ________.
(3)若連接AA′,BB′,則這兩條線段之間的關系是 ;
(4)△ABC的高CD所在直線必經過圖中的一個格點點P,在圖中標出點P.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC(頂點是網格線的交點).![]()
(1)將△ABC繞點B順時針旋轉90°得到△A′BC′,請畫出△A′BC′.
(2)求BA邊旋轉到BA′位置時所掃過圖形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程
有兩個不相等的實數根,
(1)求m的取值范圍;
(2)是否存在實數m,使方程的兩個實數根的倒數和等于0?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數與反比例函數的圖象交于點P(3,m),Q(1,3).
(1)求反函數的函數關系式;
(2)在給定的直角坐標系(如圖)中,畫出這兩個函數的大致圖象;
(3)當x為何值時,一次函數的值大于反比例函數的值?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A點的坐標為(﹣1,5),B點的坐標為(3,3),C點的坐標為(5,3),D點的坐標為(3,﹣1),小明發現:線段AB與線段CD存在一種特殊關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,你認為這個旋轉中心的坐標是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,DM,EN分別垂直平分AB和AC,交BC于點D,E,若∠DAE=50°°,則∠BAC=________,若△ADE的周長為19cm,則BC=_____cm.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com