【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計劃去往位于燈塔P的北偏東45方向上的B處.(參考數(shù)據(jù)
≈1.414,
≈1.732,
≈2.449)
(1)問B處距離燈塔P有多遠?(結(jié)果精確到0.1海里)
(2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點O處.圓形暗礁區(qū)域的半徑為50海里,進入這個區(qū)域,就有觸礁的危險.請判斷海輪到達B處是否有觸礁的危險,并說明理由.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形
中,點
、
分別在線段
、
上,
于
,點
在直線
上運動,
交直線
于
,過點
作
,交直線
于
.
![]()
(1)如圖1,當(dāng)點
在線段
的延長線上時,求證:
;
(2)如圖2,當(dāng)點
在線段
的延長線上時,將圖補充完整,點
在線段
上,連接
,若
,求證:
;
(3)在(2)的條件下,延長
至點
,延長
至點
,若
,
,則
的度數(shù)是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
![]()
![]()
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖左右并排的兩顆大樹的高度分別是AB=8米,CD=12米,兩樹的水平距離BD=5米,一觀測者的眼睛高EF=1.6米,且E、B、D在一條直線上,當(dāng)觀測者的視線FAC恰好經(jīng)過兩棵樹的頂端時,四邊形ABDC的區(qū)域是觀測者的盲區(qū),則此時觀測者與樹AB的距離EB等于( )
![]()
A.8米 B.7米 C.6米 D.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=-
x2+bx+c與x軸相交于點A,C,與y軸相交于點B,連接AB,BC,點A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB于點D,過點B作直線l∥AC,與拋物線和⊙M的另一個交點分別是E,F(xiàn).
![]()
(1)求該拋物線的函數(shù)表達式;
(2)求點C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點N,點P,Q為射線NB上的兩個動點(點P在點Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時點P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點
按如圖方式疊放在一起,友情提示:
,
,
.
![]()
(1)①若
,則
的度數(shù)為__________;
②若
,則
的度數(shù)為__________.
(2)由(1)猜想
與
的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)
且點
在直線
的上方時,當(dāng)這兩塊角尺有一組邊互相平行時,請直接寫出
角度所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F,G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為xcm/s.當(dāng)點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB'F,設(shè)點E,F,G運動的時間為t(單位:s).
(1)當(dāng)t= s時,四邊形EBFB'為正方形;
(2)當(dāng)x為何值時,以點E,B,F為頂點的三角形與以點F,C,G為頂點的三角形可能全等?
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
①兩點之間的所有連線中,線段最短;②相等的角是對頂角;③過一點有且僅有一條直線與己知直線平行;④兩點之間的距離是兩點間的線段;⑤若
,則點
為線段
的中點;⑥不相交的兩條直線叫做平行線。
A.
個B.
個C.
個D.
個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30
時,且r1=1時,r2017=_______.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com