【題目】如圖:拋物線
與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線ι⊥x軸于點F,交拋物線
于點E.![]()
(1)求A、B、C三點的坐標(biāo);
(2)當(dāng)點P在線段BC上運動時,求線段PE長的最大值;
(3)當(dāng)PE取最大值時,把拋物線
向右平移得到拋物線
,拋物線
與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線
應(yīng)向右平移幾個單位長度可得到拋物線
?
【答案】
(1)解:當(dāng)x=0時,y=-3,C(0,-3),
當(dāng)y=0時,
解得
,
,
A(-1,0),B(3,0)
(2)解:直線BC的解析式為
,則P(x,x-3)(0≦x≦3) E
.
PE=
=
當(dāng)
時,PE最大值= ![]()
(3)解:E
,直線BE的解析式為
直線CM把△BCE的面積分成1:2.
M為BE的三等分點,有兩種情況如圖:
①
和
,過
作
于G,
則
同理 ![]()
方法一:設(shè)拋物線
為 ![]()
①當(dāng)拋物線
過點
時,
解得:
或
<0(舍去)
②當(dāng)拋物線
過點
時,
解得:
或
<0(舍去)
綜上所述:把拋物線
向右平移
或
個單位長度,就能得到拋物線
.
方法二:過點
作
//x軸交拋物線
對稱軸左側(cè)于 ![]()
當(dāng)
時,
解得:
或
>1(舍去)
![]()
過點
作
//x軸交拋物線
對稱軸左側(cè)于 ![]()
當(dāng)
時, ![]()
解得:
或
>1(舍去)
![]()
綜上所述:把拋物線
向右平移
或
個單位長度,就能得到拋物線
.
![]()
【解析】(1)將x=0代入函數(shù)解析式求出對應(yīng)的函數(shù)值,就可求出點C的坐標(biāo),再由y=0,求出對應(yīng)的自變量的值,就可得出點A、B的坐標(biāo)。
(2)利用待定系數(shù)法求出直線BC的函數(shù)解析式,根據(jù)直線ι⊥x軸可知直線l與y軸平行,則F、P、E三點的橫坐標(biāo)相等,設(shè)出點P的坐標(biāo),就可表示出點E的坐標(biāo)。因此PE的長=點P的縱坐標(biāo)與點E的縱坐標(biāo)之差,列出PE與x的函數(shù)關(guān)系式,再求出其頂點坐標(biāo),根據(jù)函數(shù)的性質(zhì)即可得出PE的最大值。
(3)先用平移的單位設(shè)出c2的解析式.由于直線CM把△BCE的面積分為1:2兩部分,根據(jù)等高三角形的面積比等于底邊比,可得出ME:BE=1:2或2:1.因此本題要分兩種情況進行討論,可過M作x軸的垂線,先根據(jù)相似三角形求出M點的橫坐標(biāo),然后根據(jù)直線BE的解析式,求出M點的坐標(biāo).由于拋物線c2經(jīng)過M點,據(jù)此可求出拋物線需要平移的單位。
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,A、B兩點之間的距離是90米,甲、乙兩機器人分別從A、B兩點同時同向出發(fā)到終點C,乙機器人始終以50米分的速度行走,乙行走9分鐘到達C點.設(shè)兩機器人出發(fā)時間為t(分鐘),當(dāng)t=3分鐘時,甲追上乙.
請解答下面問題:
(1)B、C兩點之間的距離是 米.
(2)求甲機器人前3分鐘的速度為多少米/分?
(3)若前4分鐘甲機器人的速度保持不變,在4≤t≤6分鐘時,甲的速度變?yōu)榕c乙相同,求兩機器人前6分鐘內(nèi)出發(fā)多長時間相距28米?
(4)若6分鐘后甲機器人的速度又恢復(fù)為原來出發(fā)時的速度,直接寫出當(dāng)t>6時,甲、乙兩機器人之間的距離S.(用含t的代數(shù)式表示).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線y=3x+m經(jīng)過第一、三、四象限,則拋物線y=(x-m)
+1的頂點在第象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y=y
+y
,y
與x
成正比例,y
與x-1成反比例,并且x=0時y=1,x=-1時y=2;求當(dāng)x=2時y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板放在同一平面內(nèi),使直角頂點重合于點O
(1)如圖①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度數(shù).
(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫出你發(fā)現(xiàn)的結(jié)論.
(3)如圖②,當(dāng)△AOC與△BOD沒有重合部分時,(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的切線,B為切點,AO的延長線交⊙O于點C,連接BC,如果∠A=30°,AB=2
,那么AC的長等于( )![]()
A.4
B.6
C.4 ![]()
D.6 ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:
整式乘法與因式分解是方向相反的變形,由
,
可得
.
利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式.
例如:將式子
分解因式.
這個式子的常數(shù)項
,一次項系
,
所以
.
![]()
解:
.
上述分解因式
的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如右圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:
=___________________;
(2)若
可分解為兩個一次因式的積,則整數(shù)P的所有可能值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
∵
,
,
,……
,
∴![]()
=![]()
=
=
.
解答下列問題:
(1)在和式
中,第6項為______,第n項是__________.
(2)上述求和的想法是通過逆用分式減法法則,將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個數(shù)之差,使得除首末兩項外的中間各項的和為_______,從而達到求和的目的.
(3)受此啟發(fā),請你解下面的方程:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC=90°,AB=BC,D是AC的中點,點E在AC上,點F在BC上,且AE=BF.
(1)求證:DE=DF;
(2)連接EF,求∠DEF的度數(shù).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com