【題目】若a+b=4,a-b=1,則(a+1)2-(b-1)2的值為______.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=﹣
x+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.![]()
(1)求點(diǎn)A的坐標(biāo);
(2)在x軸上有一動點(diǎn)P(a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)y=﹣
+b和y=x的圖象于點(diǎn)C、D.
①若OB=2CD,求a的值;
②是否存在這樣的點(diǎn)P,使以B、O、C、D為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“*”是規(guī)定的一種運(yùn)算法則:a*b=a2﹣ab﹣3b.若(﹣2)*(﹣x)=7,那么x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:
他還利用圖2證明了線段P1P2的中點(diǎn)P(x,y)P的坐標(biāo)公式:
,
.
![]()
(1)請你幫小明寫出中點(diǎn)坐標(biāo)公式的證明過程;
運(yùn)用:(2)①已知點(diǎn)M(2,﹣1),N(﹣3,5),則線段MN長度為 ;
②直接寫出以點(diǎn)A(2,2),B(﹣2,0),C(3,﹣1),D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo): ;
拓展:(3)如圖3,點(diǎn)P(2,n)在函數(shù)
(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點(diǎn)E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在⊙O外,做直線AE,且∠EAC=∠D.
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD=
,CF=
,求BF的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD⊥BC于點(diǎn)D,D為BC的中點(diǎn),連接AB,∠ABC的平分線交AD于點(diǎn)O,連接OC,若∠AOC=130°,則∠ABC= . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com