如圖,⊙
是△ABC的外接圓,AC是直徑,過點O作OD⊥AB于點D,延長DO交⊙
于點P,過點P作PE⊥AC于點E,作射線DE交BC的延長線于F點,連接PF。
![]()
(1)若∠POC=60°,AC=12,求劣弧PC的長;(結果保留π)
(2)求證:OD=OE;
(3)求證:PF是⊙
的切線。
(1)2π;(2)(3)見解析.
【解析】
試題分析:(1)根據直徑得出半徑的長度,然后根據弧長的計算公式進行求解;(2)根據垂直得出∠ADO=∠PEO,對頂角相等,半徑相等得出△ADO和△PEO全等,從而得出OD=OE;(3)連接PC,根據直徑得出∠ABC=90°,從而說明PD∥BC,根據已知條件結合(2)得出△PCE和△PFC全等,從而說明∠OPF=90°,得出切線.
試題解析:(1)由直徑AC=12得半徑OC=6 劣弧PC的長為![]()
(2)證明:∵ OD⊥AB,PE⊥AC ∴ ∠ADO=∠PEO=90°
在△ADO和△PEO中,∠ADO=∠PEO,∠AOD=∠POE,OA=OP ∴ △ADO≌△PEO ∴ OD=OE
(3)連接PC,由AC是直徑知BC⊥AB,又OD⊥AB, ∴ PD∥BF
![]()
∴ ∠OPC=∠PCF,∠ODE=∠CFE 由(2)知OD=OE,則∠ODE=∠OED,又∠OED=∠FEC
∴ ∠FEC=∠CFE ∴ EC=FC 由OP=OC知∠OPC=∠OCE
∴ ∠PCE =∠PCF 在△PCE和△PFC中,
EC=FC ∠PCE=∠PCF PC=PC
∴ △PCE≌△PFC ∴ ∠PFC =∠PEC=90° 由∠PDB=∠B=90°可知∠OPF=90°即OP⊥PF
∴ PF是⊙
的切線
考點:扇形的弧長計算,三角形全等的證明、切線的判定.
考點分析: 考點1:圓 圓,圓的有關性質與圓的有關計算是近幾年各地中考命題的重點內容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結論開放探索題作為新的題型,分值一般是6-12分,難易度為中,考察內容:①圓的有關性質的應用。垂徑定理是重點。② 直線和圓,圓和圓的位置關系的判定及應用。③弧長,扇形面積,圓柱,圓錐的側面積和全面積的計算④圓與相似三角形,三角函數的綜合運用以及有關的開放題,探索題。突破方法:①熟練掌握圓的有關行政,掌握求線段,角的方法,理解概念之間的相互聯系和知識之間的相互轉化。②理解直線和原的三種位置關系,掌握切線的性質和判定的歌,會根據條件解決圓中的動態問題。③掌握有兩圓半徑的和或差與圓心距的大小關系來盤底的那個兩個圓的位置關系,對中考試題中常出現的閱讀理解題,探索題,要靈活運用圓的有關性質,進行合理推理與計算。④掌握弧長,扇形面積計算公式。⑤理解圓柱,圓錐的側面展開圖⑥對組合圖形 的計算要靈活運用計算方法解題。 試題屬性科目:初中數學 來源:2014-2015學年甘肅省嘉峪關市七年級上學期期中考試數學試卷(解析版) 題型:選擇題
在數軸上和表示-3的點的距離等于4的點所表示的數是( )
A.-7 B.1 C.-7和1 D.7
查看答案和解析>>
科目:初中數學 來源:2014-2015學年山西農業大學附屬中學九年級上學期期末考試數學試卷(解析版) 題型:選擇題
如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為( )
![]()
A、30° B、45° C、90° D、135°
查看答案和解析>>
科目:初中數學 來源:2014-2015學年安徽省九年級下學期開學考試數學試卷(解析版) 題型:解答題
如圖,點D在△ABC的AB邊上,且∠ACD=∠A.
![]()
(1)作△BDC的平分線DE,交BC于點E(用尺規作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷直線DE與直線AC的位置關系(不要求證明).
查看答案和解析>>
科目:初中數學 來源:2014-2015學年安徽省九年級下學期開學考試數學試卷(解析版) 題型:填空題
據報道,截止2013年12月我國網民規模達618 000 000人.將618 000 000用科學計數法表示為 ;
查看答案和解析>>
科目:初中數學 來源:2014-2015學年山西省大同市礦區七年級上學期期末質量檢測數學試卷(解析版) 題型:解答題
(本題共2個小題,每題5分,共10分)
(1)計算:![]()
(2)解方程:![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com