【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請你用其中兩個作為條件,另一個作為結論,構造一個真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
![]()
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點B的坐標為(6,4).
(1)請用直尺(不帶刻度)和圓規作一條直線AC,它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)
(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應的函數表達式.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統計,并將統計情況繪成如圖所示的頻數分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據圖中信息回答下列問題:
(1)圖中a的值為 ;
(2)若要繪制該樣本的扇形統計圖,則成績x在“70≤x<80”所對應扇形的圓心角度數為 度;
(3)此次比賽共有300名學生參加,若將“x≥80”的成績記為“優秀”,則獲得“優秀“的學生大約有 人:
(4)在這些抽查的樣本中,小明的成績為92分,若從成績在“50≤x<60”和“90≤x<100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數;
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為選拔一名選手參加“美麗邵陽,我為家鄉做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下表是李明、張華在選拔賽中的得分情況:
項目 選手 | 服裝 | 普通話 | 主題 | 演講技巧 |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結合以上信息,回答下列問題:
(1)求服裝項目的權數及普通話項目對應扇形的圓心角大小;
(2)求李明在選拔賽中四個項目所得分數的眾數和中位數;
(3)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉做代言”主題演講比賽,并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分線交于點O,如圖1所示,試求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分線(即將一個角平均分成三等分的射線)相交于O,O1,如圖2所示,試求∠BOC的大小;
(3)如此類推,若∠ABC和∠ACB的n等分線自下而上依次相交于O,O1,O2…,如圖3所示,試探求∠BOC的大小與n的關系,并判斷當∠BOC=170°時,是幾等分線的交線所成的角.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點A與BC邊上的點A′重合,折痕為BE,再沿過點E的直線折疊,使點B與AD邊上的點 B重合,折痕為EF,連結
,
.
,則
的值為________
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀并解答問題:
數學大師的名題與方程
歐拉是18世紀瑞士著名的數學大師.他的一生都致力于數學各個領域的研究,并取得非凡的成就.在他所著的《代數學入門》一書中就曾經出現過好幾道和遺產分配有關的數學問題.他構思這些問題的初衷,正是為了強化方程解題的適用和便利.
請用適當的方法解答下面問題:
父親死后,四個兒子按下述方式分了他的財產:老大拿了財產的一半少3000英鎊:老二拿了財產的
少1000英鎊;老三拿了恰好是財產的
;老四拿了財產的
加上600英鎊.問整個財產有多少?每個兒子各分了多少?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com