【題目】如圖,AD∥BC,∠D=90°.
(1)如圖1,若∠DAB的平分線與∠CBA的平分線交于點P,試問:點P是線段CD的中點嗎?為什么? ![]()
(2)如圖2,如果P是DC的中點,BP平分∠ABC,∠CPB=35°,求∠PAD的度數為多少? ![]()
【答案】
(1)解:點P是線段CD的中點.理由如下:
過點P作PE⊥AB于E,
∵AD∥BC,∠D=90°,
∴∠C=180°﹣∠D=90°,即PC⊥BC,
∵∠DAB的平分線與∠CBA的平分線交于點P,
∴PD=PE,PC=PE,
∴PC=PD,
∴點P是線段CD的中點;
![]()
(2)解:過點P作PE⊥AB于E,
∵AD∥BC,∠D=90°,
∴∠C=180°﹣∠D=90°,即PC⊥BC.
在△PBE與△PBC中,
,
∴△PBE≌△PBC(AAS),
∴∠EPB=∠CPB=35°,PE=PC,
∵PC=PD,
∴PD=PE,
在Rt△PAD與Rt△PAE中,
,
∴Rt△PAD≌Rt△PAE(HL),
∴∠APD=∠APE,
∵∠APD+∠APE=180°﹣2×35°=110°,
∴∠APD=55°,
∴∠PAD=90°﹣∠APD=35°.
![]()
【解析】(1)過點P作PE⊥AB于E,根據平行線的性質求出∠C=90°,即PC⊥BC,再根據角平分線上的點到角的兩邊距離相等可得PD=PE,PC=PE,從而得到PC=PD,然后根據線段中點的定義解答;(2)過點P作PE⊥AB于E,根據平行線的性質求出∠C=90°,即PC⊥BC,利用AAS證明△PBE≌△PBC,得出∠EPB=∠CPB=35°,PE=PC,由PC=PD,等量代換得到PD=PE,再根據HL證明Rt△PAD≌Rt△PAE,得出∠APD=∠APE=55°,那么∠PAD=90°﹣∠APD=35°.
【考點精析】利用角平分線的性質定理對題目進行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數學 來源: 題型:
【題目】海中有一個小島P,它的周圍18海里內有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續向東航行,有沒有觸礁危險?請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數m進行分組統計,結果如表所示:
![]()
組號 | 分組 | 頻數 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統計圖來描述,求分數在8≤m<9內所對應的扇形的圓心角的度數.
(3)將在第一組內的兩名選手記為A1,A2,在第四組內的兩名選手記為B1,B2, 從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線EF,CD相交于點O,OA⊥OB,且OC平分∠AOF. ![]()
(1)若∠AOE=40°,求∠BOD的度數;
(2)若∠AOE=α,求∠BOD的度數.(用含α的代數式表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com