【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為( )
![]()
A. 5 B. 8 C. 3 D. 4
【答案】C
【解析】分析:作F點關于BD的對稱點F′,則PF=PF′,由兩點之間線段最短可知當E、P、F′在一條直線上時,EP+FP有最小值,然后求得EF′的長度即可.
詳解:
作F點關于BD的對稱點F′,則PF=PF′,連接EF′交BD于點P.
![]()
∴EP+FP=EP+F′P.
由兩點之間線段最短可知:當E、P、F′在一條直線上時,EP+FP的值最小,此時EP+FP=EP+F′P=EF′.
∵四邊形ABCD為菱形,周長為12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四邊形AEF′D是平行四邊形,
∴EF′=AD=3.
∴EP+FP的最小值為3.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( )
![]()
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示: (1)按下列語句畫出圖形:
①延長AC到D,使CD=AC;②反向延長CB到E,使CE=BC;③連接DE.
(2)度量其中的線段和角,你有什么發現?
(3)試判斷圖中兩個三角形的面積是否相等.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下面的點陣圖和相應的等式,探究其中的規律:
![]()
(1)在④和⑤后面的橫線上分別寫出相應的等式:
①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….
(2)通過猜想寫出與第n個點陣圖相對應的等式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示:
![]()
(1)折疊數軸,若1表示的點與-1表示的點重合,則-2表示的點與數 表示的點重合;
(2)折疊數軸,若-1表示的點與5表示的點重合,則4表示的點與 表示的點重合;
(3)已知數軸上點A表示的數是-1,點B表示的數是2,若點A以每秒1個單位長度的速度在數軸上移動,點B以每秒2個單位長度的速度在數軸上移動,且點A始終在點B的左側,求經過幾秒時,A、B兩點的距離為6個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點,E是CD的中點, 過點C作CF//AB交AE的延長線于點F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將一張長方形的紙對折一次,然后沿折痕剪開,可以將這張紙分為兩部分:如圖2,如果對折兩次,然后沿最后一次的折痕剪開,可以將這張紙分為三部分;用同樣的操作方法繼續下去,如果對折4次,然后沿最后一次的折痕剪開,則可以將它剪成_______部分;如果對折
次,沿最后一次的折痕剪開,則可以將它剪成_______ 部分.(最后一空用含
的式子表示)
![]()
![]()
(圖1) (圖2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com