我們解一元二次方程3x2﹣6x=0時,可以運用因式分解法,將此方程化為3x(x﹣2)=0,從而得到兩個一元一次方程:3x=0或x﹣2=0,進而得到原方程的解為x1=0,x2=2.這種解法體現的數學思想是( )
|
| A. | 轉化思想 | B. | 函數思想 | C. | 數形結合思想 | D. | 公理化思想 |
科目:初中數學 來源: 題型:
在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的
捐款情況,隨機抽取了50名學生的捐款數進行了統計,并繪制成下面的統計圖。
(1)這50名同學捐款的眾數為 元,中位數為 元
(2)求這50名同學捐款的平均數
(3)該校共有600名學生參與捐款,請估計該校學生
的捐款總數
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,直線⊥線段
于點
,點
在
上,且
,點
是直線上的動點,作點
關于直線
的對稱點
,直線
與直線
相交于點
,連接![]()
(1)如圖1,若點
與點
重合,則∠
= °,線段
與
的比值為 ;
(2)如圖2,若點
與點
不重合,設過
、
、
三點的圓與直線
相交于
,
連接
。
求證:①
=
;②
=2
;
(3)如圖3,
,
,則滿足條件
的點都在一個確定的圓上,在
以下兩小題中選做一題:
①如果你能發現這個確定圓的圓心和半徑,那么不必寫出發現過程,只要證明這個
圓上的任意一點Q,都滿足QA=2QB
②如果你不能發現這個確定圓的圓心和半徑,那么請取幾個特殊位置的
點,如點
在直線
上、點
與點
重合等進行探究,求這個圓的半徑
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A、B的坐標分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當點C落在直線y=2x﹣6上時,線段BC掃過的面積為( )
![]()
|
| A.] | 4 | B. | 8 | C. | 16 | D. | 8 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com