【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b′),給出如下定義:
若b′=
,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(-2,5)的限變點(diǎn)的坐標(biāo)是(-2,-5).
(1)①點(diǎn)(
,1)的限變點(diǎn)的坐標(biāo)是 ;
②在點(diǎn)A(-2,-1),B(-1,2)中有一個(gè)點(diǎn)是函數(shù)y=
圖象上某一個(gè)點(diǎn)的限變點(diǎn),這個(gè)點(diǎn)是 ;(填“A”或“B”)
(2)若點(diǎn)P在函數(shù)y=-x+3(-2≤x≤k,k>-2)的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是-5≤b′≤2,求k的取值范圍 ;
(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y=x2-2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是b′≥m或b′<n,其中m>n.令s=m-n,求s關(guān)于t的函數(shù)解析式及s的取值范圍 .
![]()
【答案】(1)①(
,1),②B,(2)5≤k≤8,(3)s=t2+1(t≥1),s的取值范圍是s≥2
【解析】
(1)①直接根據(jù)限變點(diǎn)的定義直接得出答案;
②點(diǎn)(-1,-2)在反比例函數(shù)圖象上,點(diǎn)(-1,-2)的限變點(diǎn)為(-1,2),據(jù)此得到答案;
(2)根據(jù)題意可知y=-x+3(x≥-2)圖象上的點(diǎn)P的限變點(diǎn)必在函數(shù)y=
的圖象上,結(jié)合圖象即可得到答案;
(3)首先求出y=x2-2tx+t2+t頂點(diǎn)坐標(biāo),結(jié)合t與1的關(guān)系確定y的最值,進(jìn)而用m和n表示出s,根據(jù)t的取值范圍求出s的取值范圍.
(1)①根據(jù)限變點(diǎn)的定義可知點(diǎn)(
,1)的限變點(diǎn)的坐標(biāo)為(
,1);
②(-1,-2)限變點(diǎn)為(-1,2),即這個(gè)點(diǎn)是點(diǎn)B.
(2)依題意,y=-x+3(x≥-2)圖象上的點(diǎn)P的限變點(diǎn)必在函數(shù)y=
的圖象上.
![]()
∴b′≤2,即當(dāng)x=1時(shí),b′取最大值2.
當(dāng)b′=-2時(shí),-2=-x+3.
∴x=5.
當(dāng)b′=-5時(shí),-5=x-3或-5=-x+3.
∴x=-2或x=8.
∵-5≤b′≤2,
由圖象可知,k的取值范圍是5≤k≤8.
(3)∵y=x2-2tx+t2+t=(x-t)2+t,
∴頂點(diǎn)坐標(biāo)為(t,t).
若t<1,b′的取值范圍是b′≥m或b′<n,與題意不符.
若t≥1,當(dāng)x≥1時(shí),y的最小值為t,即m=t;
當(dāng)x<1時(shí),y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].
∴s=m-n=t+(1-t)2+t=t2+1.
∴s關(guān)于t的函數(shù)解析式為s=t2+1(t≥1),
當(dāng)t=1時(shí),s取最小值2,
∴s的取值范圍是s≥2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,F,G是直徑AB上的兩點(diǎn),C,D,E是半圓上的三點(diǎn),如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距600米,甲、乙兩人同時(shí)從A地出發(fā)前往B地,所走路程y(米)與行駛時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示,則下列說法中:①甲每分鐘走100米;②兩分鐘后乙每分鐘走50米;③甲比乙提前3分鐘到達(dá)B地;④當(dāng)x=2或6時(shí),甲乙兩人相距100米.正確的有_____(在橫線上填寫正確的序號(hào)).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)全體同學(xué)參加了愛心捐款活動(dòng),該校隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖:
![]()
(1)求出本次抽查的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是___________元,中位數(shù)是_____________;
(3)請(qǐng)估計(jì)全校八年級(jí)1000名學(xué)生,捐款20元的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在
中,
,
,
分別是
的高線和角平分線.
![]()
(1)若
,求
的度數(shù);
(2)試寫出
與
有何關(guān)系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在
中,
于E,
,D是AE上的一點(diǎn),且
,連接BD,CD.
![]()
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將
繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將
中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校計(jì)劃在暑假期間對(duì)總面積為5400
的塑膠操場(chǎng)進(jìn)行改造,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成改造的面積是乙隊(duì)每天能完成改造的面積的2倍,并且在獨(dú)立完成面積為1200
區(qū)域的改造時(shí),甲隊(duì)比乙隊(duì)少用10天.
(1)求甲、乙兩工程隊(duì)每天能完成操場(chǎng)改造的面積分別是多少
?
(2)為方便管理,學(xué)校每天只允許一個(gè)工程隊(duì)施工,若學(xué)校每天需付給甲隊(duì)的施工費(fèi)用為0.8萬元,乙隊(duì)為0.35萬元,要使這次的改造在暑假50天期間完工,怎樣安排才能使費(fèi)用最省?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,AC=BC,BE平分∠ABC,AD⊥BE的延長線于點(diǎn)D,若AD=2,則△ABE的面積為( ).
![]()
A.4B.6C.2
D.2![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,對(duì)于點(diǎn)
與圖形
,若點(diǎn)
為圖形
上任意一點(diǎn), 點(diǎn)
關(guān)于第一、三象限角平分線的對(duì)稱點(diǎn)為
,且線段
的中點(diǎn)為
,則稱點(diǎn)
是圖形
關(guān)于點(diǎn)
的“關(guān)聯(lián)點(diǎn)”
(1)如圖1,若點(diǎn)
是點(diǎn)
關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn),則點(diǎn)
的坐標(biāo)為
(2)如圖2,在
中,
①將線段
向右平移
個(gè)單位長度,若平移后的線段上存在兩個(gè)
關(guān)于點(diǎn)
的關(guān)聯(lián)點(diǎn),則
的取值范圍是
②已知點(diǎn)
和點(diǎn)
,若線段
上存在
關(guān)于點(diǎn)
的關(guān)聯(lián)點(diǎn),求
的取值范圍.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com