【題目】閱讀下面材料:
如圖
,把
沿直線
平行移動(dòng)線段
的長(zhǎng)度,可以變到
的位置;
如圖
,以
為軸,把
翻折
,可以變到
的位置;
如圖
,以點(diǎn)
為中心,把
旋轉(zhuǎn)
,可以變到
的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問(wèn)題:
①在圖
中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使
變到
的位置;
②指圖中線段
與
之間的關(guān)系,為什么?
![]()
【答案】①在圖
中可以通過(guò)旋轉(zhuǎn)
使
變到
的位置;②證明見(jiàn)解析.
【解析】
①AB和AD是對(duì)應(yīng)線段,那么應(yīng)繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到;
②關(guān)系應(yīng)包括位置關(guān)系和數(shù)量關(guān)系.旋轉(zhuǎn)前后的三角形是全等的,∴BE=DF,延長(zhǎng)BE交DF于點(diǎn)G,利用對(duì)應(yīng)角相等,可得到垂直.
①在圖
中可以通過(guò)旋轉(zhuǎn)
使
變到
的位置.
②由全等變換的定義可知,通過(guò)旋轉(zhuǎn)
,
變到
的位置,只改變位置,不改變形狀大小,
∴
.
∴
,
.
∵
,
∴
,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=ax2﹣4ax+3(a≠0)與y軸交于點(diǎn)A,A、B兩點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),直線OB分別與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)C.
(1)直接寫(xiě)出對(duì)稱(chēng)軸及B點(diǎn)的坐標(biāo);
(2)已知直線y2=bx﹣4b+3(b≠0)與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)D. ①判斷直線y2=bx﹣4b+3(b≠0)是否經(jīng)過(guò)點(diǎn)B,并說(shuō)明理由;
②若△BDC的面積為1,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=
(x<0)的圖象交于點(diǎn)A.與x軸、y軸分別交于點(diǎn)B、C,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)D作DE∥AB,交y軸于點(diǎn)E.己知四邊形ADEC的面積為6. ![]()
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2.求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上. ![]()
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:
,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:甲乙兩車(chē)分別從相距300千米的A、B兩地同時(shí)出發(fā)相向而行,其中甲到達(dá)B地后立即返回,如圖是它們離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.
(1)求甲車(chē)離出發(fā)地的距離y甲(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)若已知乙車(chē)行駛的速度是40千米/小時(shí),求出發(fā)后多長(zhǎng)時(shí)間,兩車(chē)離各自出發(fā)地的距離相等;
(3)在上述條件下,直接寫(xiě)出它們?cè)谛旭傔^(guò)程中相遇時(shí)的時(shí)間.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 ![]()
(1)【提出問(wèn)題】
如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
(2)【類(lèi)比探究】
如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
(3)【拓展延伸】
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長(zhǎng)線于點(diǎn)E. ![]()
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在手工制作課上,老師組織七年級(jí)(2)班的學(xué)生用硬紙制作圓柱形茶葉筒.七年級(jí)(2)班共有學(xué)生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學(xué)生每小時(shí)剪筒身50個(gè)或剪筒底120個(gè).
(1)七年級(jí)(2)班有男生、女生各多少人?
(2)要求一個(gè)筒身配兩個(gè)筒底,為了使每小時(shí)剪出的筒身與筒底剛好配套,應(yīng)該分配多少名學(xué)生剪筒身,多少名學(xué)生剪筒底?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
ABC中,
A=80
,
ABC與
ACD的平分線交于點(diǎn)A1,得
A1;
A1BC與
A1CD的平分線相交于點(diǎn)A2,得
A2;……;
A7BC與
A7CD的平分線相交于點(diǎn)A8,得
A8,則
A8的度數(shù)為()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com