【題目】國際足球比賽對足球的質量有嚴格的要求,比賽所用足球上標有:430±20(g).請問:
(1)比賽所用足球的標準質量是多少?符合比賽所用足球質量的合格范圍是多少?
(2)組委會隨機抽查了8只足球的質量,高于標準質量記為正,低于標準質量記為負,結果分別是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求這8只足球質量的合格率.
(足球質量的合格率=
)
科目:初中數學 來源: 題型:
【題目】在一條不完整的數軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示. 設點A,B,C所對應數的和是p.
(1)若以B為原點,則點A,C所對應的數為 、 ,p的值為 ;若以C為原點,p 的值為 ;
(2)若原點O在圖中數軸上點C的右邊,且CO=28,求p的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為( )
![]()
A. 10 B. 8 C. 14 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面推理過程
如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
![]()
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF=
,
∠ABE=
.( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學數學興趣小組為了解本校學生對電視節目的喜愛情況,隨機調查了部分學生最喜愛哪一類節目(被調查的學生只選一類并且沒有不選擇的),并將調查結果制成了如下的兩個統計圖(不完整).請你根據圖中所提供的信息,完成下列問題:
![]()
(1)求本次調查的學生人數;
(2)請將兩個統計圖補充完整,并求出新聞節目在扇形統計圖中所占圓心角的度數;
(3)若該中學有2000名學生,請估計該校喜愛電視劇節目的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級640名學生在“計算機應用”培訓前、后各參加了一次水平相同的測試,并以同一標準分成“不合格”、“合格”、“優秀”3個等級,為了解培訓效果,用抽樣調查的方式從中抽取32名學生的2次測試等級,并繪制成條形統計圖:
![]()
(1)這32名學生經過培訓,測試等級“不合格”的百分比比培訓前減少了多少?
(2)估計該校八年級學生中,培訓前、后等級為“合格”與“優秀”的學生各有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)【證法回顧】證明:三角形中位線定理.
已知:如圖1,DE是△ABC的中位線.
求證: .
證明:添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點)到點F,使得EF=DE,連接CF;
請繼續完成證明過程:
![]()
(2)【問題解決】
如圖2,在正方形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=2,DF=3,∠GEF=90°,求GF的長.
(3)【拓展研究】
如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=
,DF=2,∠GEF=90°,求GF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商家經銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個月的試銷時間內發現,銷量w(kg)隨銷售單價x(元/kg)的變化而變化,具體變化規律如下表所示
銷售單價x(元/kg) | … | 70 | 75 | 80 | 85 | 90 | … |
銷售量w(kg) | … | 100 | 90 | 80 | 70 | 60 | … |
設該綠茶的月銷售利潤為y(元)(銷售利潤=單價×銷售量﹣成本﹣投資).
(1)請根據上表,寫出w與x之間的函數關系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數關系式(不必寫出自變量x的取值范圍).并求出x為何值時,y的值最大?
(3)若在第一個月里,按使y獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預,銷售單價不得高于90元,要想在全部收回投資的基礎上使第二個月的利潤達到1700元,那么第二個月里應該確定銷售單價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點D從點C出發沿CA方向以4 cm/秒的速度向點A勻速運動,同時點E從點A出發沿AB方向以2 cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D,E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF。
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,請說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com